Journal of Comparative Physiology A

, Volume 161, Issue 4, pp 511–531 | Cite as

‘Matched filters’ — neural models of the external world

  • Rüdiger Wehner


External World Neural Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali MA (1978) Sensory ecology. Review and perspectives. Plenum Press, New York LondonGoogle Scholar
  2. Autrum H (1940) Über Lautäußerungen und Schallwahrnehmung bei Arthropoden. II. Das Richtungshören vonLocusta und Versuch einer Hörtheorie für Tympanalorgane vom Locustidentyp. Z Vergl Physiol 28:326–352Google Scholar
  3. Baker RR (1985) Magnetoreception by man and other primates. Topics Geobiol 5:537–561 (see also the rebuttals and critiques presented by several authors on pp 563–622 of the same volume)Google Scholar
  4. Bennet-Clark HC (1984) Insect hearing: acoustics and transduction. In: Lewis T (ed) Insect communication. Academic Press, London New York, pp 49–82Google Scholar
  5. Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585Google Scholar
  6. Bohn H, Täuber U (1971) Beziehungen zwischen der Wirkung polarisierten Lichtes auf das Elektroretinogramm und der Ultrastruktur des Auges vonGerris lacustris. Z Vergl Physiol 72:32–53Google Scholar
  7. Brooke ML de (1981) Size as a factor influencing the ownership of copulation burrows by the ghost crab (Ocypode ceratophthalmus). Z Tierpsychol 55:63–78Google Scholar
  8. Chen HS, Rao CRN (1968) Polarization of light on reflection by some natural surfaces. Brit J Appl Phys, Ser 2, 1:1191–1200Google Scholar
  9. Creutzfeld OD (1981) Diversification and synthesis of sensory systems across the cortical link. In: Pompeiano O, Ajmone-Marsan C (eds) Brain mechanisms of perceptual awareness and purposeful behavior. Raven Press, New York, pp 153–165Google Scholar
  10. Delcomyn F (1981) Insect locomotion on land. In: Herreid CF, Fourtner CR (eds) Locomotion and energetics in arthropods. Plenum Press, New York London, pp 103–125Google Scholar
  11. Dumont JPC, Robertson RM (1986) Neuronal circuits: an evolutionary perspective. Science 233:849–853Google Scholar
  12. Elliot-Smith C (1924) The evolution of man: essays. Oxford University Press, OxfordGoogle Scholar
  13. Fent K (1985) Himmelsorientierung bei der WüstenameiseCataglyphis bicolor: Bedeutung von Komplexaugen und Ocellen. Ph D thesis, University of ZürichGoogle Scholar
  14. Fox PT, Mintun MA, Raichle ME, Miezin FM, Allman JM, Van Essen DC (1986) Mapping human visual cortex with positron emission tomography. Nature 323:806–809Google Scholar
  15. Frisch K von (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148Google Scholar
  16. Goodman JW (1968) Introduction to Fourier optics. McGraw-Hill, New YorkGoogle Scholar
  17. Gould JL (1982) The map sense of pigeons. Nature 296:205–211 (see also rebuttals and critiques by Wallraff HG, Benvenuti S, Papi F (1982), Nature 300:293–294).Google Scholar
  18. Greenspan BN (1980) Male size and reproductive success in the communal courtship system of the fiddler crabUca rapax. Anim Behav 28:387–392Google Scholar
  19. Hesse R (1901) Untersuchungen über die Organe der Lichtempfindung bei niederen Tieren. VII. Von den Arthropoden-Augen. Z Wiss Zool 70:347–473Google Scholar
  20. Hesse R (1908) Das Sehen der niederen Tiere. G. Fischer, JenaGoogle Scholar
  21. Horridge GA (1978) The separation of visual axes in apposition compound eyes. Phil Trans R Soc Lond B 285:1–59Google Scholar
  22. Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organization. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York, pp 613–756Google Scholar
  23. Keeton WT (1971) Magnets interfere with pigeon homing. Proc Natl Acad Sci USA 68:102–106Google Scholar
  24. Kiepenheuer J (1984) The magnetic compass mechanism of birds and its possible association with the shifting course directions of migrants. Behav Ecol Sociobiol 14:81–99Google Scholar
  25. Kirschvink JL, Jones DS, Mac Fadden BJ (1985) Magnetite biomineralization and magnetoreception in organisms. A new biomagnetism. Plenum Press, New York LondonGoogle Scholar
  26. Labhart T (1985) Polarisationsempfindliche Interneurone im Sehsystem der Grille. Deutsche Neurobiologentagung, Abstracts, p 137Google Scholar
  27. Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 471–592Google Scholar
  28. Lewis B (1983) Directional cues for auditory localization. In: Lewis B (ed) Bioacoustics — a comparative approach. Academic Press, London New York, pp 233–257Google Scholar
  29. Menzel R (1979) Spectral sensitivity and color vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 503–580Google Scholar
  30. Michelsen A (1983) Biophysical basis of sound communication. In: Lewis B (ed) Bioacoustics — a comparative approach. Academic Press, London New York, pp 3–38Google Scholar
  31. Munk O (1970) On the occurrence and significance of horizontal band-shaped retinal areae in teleosts. Vidensk Medd Dan Naturhist Foren 133:85–120Google Scholar
  32. Rose D, Dobson VG (1985) Models of the visual cortex. John Wiley, Chichester, New YorkGoogle Scholar
  33. Rossel S, Wehner R (1982) The bee's map of the e-vector pattern in the sky. Proc Natl Acad Sci USA 79:4451–4455Google Scholar
  34. Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131Google Scholar
  35. Rossel S, Wehner R (1987) The bee's e-vector compass. In: Menzel R (ed) Honeybee neurobiology. Springer, New York Berlin, pp 76–93Google Scholar
  36. Schmidt JM, Smith JJB (1986) Correlations between body angles and substrate curvature in the parasitoid waspTrichogramma minutum: a possible mechanism of host radius measurement. J Exp Biol 125:271–285Google Scholar
  37. Schmitz H (1967) System der Philosophie. Bd 3: Der Raum. 1. Teil: Der leibliche Raum. H. Bouvier, BonnGoogle Scholar
  38. Schuijf A, Buwalda RJA (1980) Underwater localization — a major problem in fish acoustics. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Springer, New York Berlin Heidelberg, pp 43–77Google Scholar
  39. Schwind R (1978) Visual system ofNotonecta glauca: A neuron sensitive to movement in the binocular visual field. J Comp Physiol 123:315–328Google Scholar
  40. Schwind R (1980) Geometrical optics of theNotonecta eye: adaptations to optical environment and way of life. J Comp Physiol 140:59–68Google Scholar
  41. Schwind R (1983) Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer,Notonecta glauca. Cell Tissue Res 232:53–63Google Scholar
  42. Schwind R (1984) The plunge reaction of the backswimmerNotonecta glauca. J Comp Physiol A 155:319–321Google Scholar
  43. Searle J (1984) Minds, brains and science. The 1984 Reith lectures. British Broadcasting Corporation, LondonGoogle Scholar
  44. Stange G, Howard J (1979) An ocellar dorsal light response in a dragonfly. J Exp Biol 83:351–355Google Scholar
  45. Stebbins RC, Kalk M (1961) Observations on the natural history of the mud-skipper,Periophthalmus sobrinus. Copeia 61:18–27Google Scholar
  46. Stockhammer K (1959) Die Orientierung nach der Schwingungsrichtung linear polarisierten Lichtes und ihre sinnesphysiologischen Grundlagen. Ergeb Biol 21:23–56Google Scholar
  47. Taylor CP (1981) Contribution of compound eyes and ocelli to steering of locusts in flight. I. Behavioural analysis. J Exp Biol 93:1–18Google Scholar
  48. Trujillo-Cenóz O, Bernard GD (1972) Some aspects of the retinal organization ofSympychus lineatus (Diptera, Dolichopodidae). J Ultrastruct Res 38:149–160Google Scholar
  49. Walcott C, Green RP (1974) Orientation of homing pigeons altered by change in the direction of an applied magnetic field. Science 184:180–182Google Scholar
  50. Walls GL (1942) The vertebrate eye and its adaptive radiation. Hafner, New YorkGoogle Scholar
  51. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 287–616Google Scholar
  52. Wehner R (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184:1–132Google Scholar
  53. Wehner R (1983a) The perception of polarized light. Soc Exp Biol Symp 36:331–369Google Scholar
  54. Wehner R (1983b) Celestial and terrestrial navigation: human strategies — insect strategies. In: Huber F, Markl H (eds) Neuroethologie and behavioral physiology. Springer, Berlin Heidelberg New York, pp 366–381Google Scholar
  55. Wehner R, Räber F (1979) Visual spatial memory in desert ants,Cataglyphis bicolor (Hymenoptera, Formicidae). Experientia 35:1569–1571Google Scholar
  56. Wehner R, Rossel S (1985) The bee's celestial compass — a case study in behavioural neurobiology. Fortschr Zool 31:11–53Google Scholar
  57. Wehner R, Srinivasan MV (1984) The world as the insect sees it. In: Lewis T (ed) Insect communication. R Entomol Soc London. Academic Press, London, pp 29–47Google Scholar
  58. Wehner R, Strasser S (1985) The POL area of the honey bee's eye: behavioural evidence. Physiol Entomol 10:337–349Google Scholar
  59. Wiese K (1974) The mechanoreceptive system of prey localization inNotonecta. II. The principle of localization. J Comp Physiol 92:317–325Google Scholar
  60. Wilson M (1978) The functional organization of locust ocelli. J Comp Physiol 124:297–316Google Scholar
  61. Wiltschko W (1968) Über den Einfluß statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rube cula). Z Tierpsychol 25:537–558Google Scholar
  62. Wiltschko W (1972) Magnetic compass of European robins. Science 176:62–64Google Scholar
  63. Wiltschko W, Wiltschko R (1976) Interrelation of magnetic compass and star orientation in night migrating birds. J Comp Physiol 109:91–99Google Scholar
  64. Zeil J, Nalbach G, Nalbach HO (1986) Eyes, eye stalks and the visual world of semi-terrestrial crabs. J Comp Physiol A 159:801–811Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Rüdiger Wehner
    • 1
  1. 1.Department of ZoologyUniversity of ZürichZürichSwitzerland

Personalised recommendations