Advertisement

Oxidation of Metals

, Volume 2, Issue 1, pp 59–99 | Cite as

Low-temperature oxidation

  • F. P. Fehlner
  • N. F. Mott
Article

Abstract

Low-temperature oxidation is a reaction, occurring at or below room temperature, between a solid and a gas. It usually involves the combination of oxygen with metals, and it has the greatest commercial impact in the presence of moisture, as in corrosion. Cabrera and Mott put forward a theory of low-temperature oxidation, based on the assumption that cation migration occurs under the influence of a potential built up across the growing oxide film. Recent experimental results require that this theory be expanded to explain recent observations such as anion migration during oxide growth and the transition from the initial chemisorbed monolayer to a bulk, threedimensional oxide. The additional ideas put forward in the present paper may be summarized as follows. Low-temperature oxidation is controlled by the nature of the oxide; whether it is a network former or a modifier. A period of fast, linear oxidation is followed by a slow logarithmic reaction whose rate, in turn, can increase if the oxide film crystallizes to form grain boundaries. The initial fast oxidation is a continuation of the chemisorption process. Place exchange (anions and cations interchanging positions) occurs when the energy due to the image force of an oxygen ion is greater than the bond energy holding the ion in place. A stable film forms when this bond energy is greater than the image force energy. The oxygen ions formed on the oxide surface then set up a potential across the film. This potential provides the driving force for continued reaction. Oxide growth during this later stage is a slow, logarithmic process. A barrier to ion transport exists at the gas-oxide interface in the case of anion migration and at the metal-oxide interface in the case of cation migration. In both cases, the field built up across the oxide lowers the barrier sufficiently so that ion migration can occur. Network modifiers allow cation migration. The reaction rate is sensitive to crystallographic orientation of the metal, but not to oxygen pressure. A constant voltage is maintained across the film, so that the Cabrera-Mott theory explains the logarithmic kinetics. Network-forming oxides allow onion migration. The number of anions, and hence, the rate of reaction, is sensitive to oxygen pressure, but not crystallographic orientation of the metal substrate. Since the potential is a result of the mobile anions, the film tends to grow under constant field. The logarithmic kinetics then must be explained by an increasing activation energy for ion transport, as proposed by Eley and Wilkinson. The logarithmic growth rate can be increased by the presence of water vapor if the water introduces “dangling” bonds into an oxide network structure. Crystallization of the oxide film also increases its rate of growth and results in the formation of oxide islands.

Keywords

Oxide Film Crystallographic Orientation Image Force Oxide Growth Anion Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Cabrera and N. F. Mott,Rept. Progr. Phys. 12, 163 (1948–1949).Google Scholar
  2. 2.
    N. Cabrera,Phil. Mag. 40, 175 (1949).Google Scholar
  3. 3.
    K. Hauffe and B. Ilschner,Z. Elektrochem. 58, 382 (1954).Google Scholar
  4. 4.
    A. T. Fromhold, Jr. and E. L. Cook,J. Chem. Phys. 44, 4564 (1966);Phys. Rev. 158, 600 (1967).Google Scholar
  5. 5.
    J. E. Boggio and R. C. Plumb,J. Chem. Phys. 44, 1081 (1966).Google Scholar
  6. 6.
    D. D. Eley and P. R. Wilkinson,Proc. Roy. Soc. (London) Ser. A 254, 327 (1960).Google Scholar
  7. 7.
    C. T. Kirk, Jr. and E. E. Huber, Jr.,Surface Sci. 9, 217 (1968).Google Scholar
  8. 8.
    N. F. Mott,Trans. Faraday Soc. 35, 1175 (1939);36, 472 (1940);43, 429 (1947).Google Scholar
  9. 9.
    M. A. H. Lanyon and E. M. W. Trapnell,Proc. Roy. Soc. (London) Ser. A 227, 387 (1955).Google Scholar
  10. 10.
    W. Rühl,Z. Physik 176, 409 (1963).Google Scholar
  11. 11.
    F. Jona,J. Phys. Chem. Solids 28, 2155 (1967).Google Scholar
  12. 12.
    J. W. May and L. H. Germer,Surface Sci. 11, 443 (1968).Google Scholar
  13. 13.
    G. K. L. Cranstoun and J. S. Anderson,Nature 219, 365 (1968).Google Scholar
  14. 14.
    S. Nakamura and E. W. Müller,J. Appl. Phys. 36, 3634 (1965).Google Scholar
  15. 15.
    G. Ehrlich,1961 Trans. 8th Vacuum Symp. and 2nd Intern. Cong. (Pergamon Press, New York, 1962), p. 126.Google Scholar
  16. 16.
    J. J. Lander,Surface Sci. 1, 125 (1964).Google Scholar
  17. 17.
    D. Brennan, D. O. Hayward, and B. M. W. Trapnell,Proc. Roy. Soc. (London) Ser. A 256, 81 (1960).Google Scholar
  18. 18.
    D. Lichtman and T. R. Kirst,Phys. Letters 20, 7 (1966).Google Scholar
  19. 19.
    T. E. Madey and J. T. Yates,Surface Sci. 11, 327 (1968).Google Scholar
  20. 20.
    A. E. Lee and B. A. Pethica,Proc. Roy. Soc. (London) Ser. A 309, 141 (1969).Google Scholar
  21. 21.
    J. A. Becker and C. D. Hartman,J. Phys. Chem. 57, 153 (1953).Google Scholar
  22. 22.
    Ken-Ichi Tanaka and K. Tamaru,J. Catalysis 2, 366 (1963).Google Scholar
  23. 23.
    A. J. Pignocco and G. E. Pellissier,Surface Sci. 7, 261 (1967).Google Scholar
  24. 24.
    C. M. Quinn and M. W. Roberts,Trans. Faraday Soc. 60, 899 (1964).Google Scholar
  25. 25.
    E. E. Huber, Jr. and C. T. Kirk, Jr.,Surface Sci. 5, 447 (1966).Google Scholar
  26. 26.
    M. W. Roberts and B. R. Wells,Surface Sci. 15, 325 (1969).Google Scholar
  27. 27.
    J. M. Saleh, B. R. Wells, and M. W. Roberts,Trans. Faraday Soc. 60, 1865 (1964).Google Scholar
  28. 28.
    J. C. Riviere,Brit. J. Appl. Phys. 15, 1341 (1964).Google Scholar
  29. 29.
    J. C. Riviere,Brit. J. Appl. Phys. 16, 1507 (1965).Google Scholar
  30. 30.
    M. W. Roberts and B. R. Wells,Surface Sci. 8, 453 (1967).Google Scholar
  31. 31.
    N. F. Mott and R. J. Watts-Tobin,Electrochim. Acta 4, 79 (1961).Google Scholar
  32. 32.
    Kuan-Han Sun,J. Am. Ceram. Soc. 30, 277 (1947).Google Scholar
  33. 33.
    F. Ordway,Science 143, 800 (1964).Google Scholar
  34. 34.(a)
    H. Rawson,Inorganic Glass-Forming Systems (Academic Press London, 1967) pp. 1–30.Google Scholar
  35. 34.(b)
    H. Rawson,Inorganic Glass-Forming Systems (Academic Press London, 1967) pp. 31–44.Google Scholar
  36. 34.(c)
    H. Rawson,Inorganic Glass-Forming Systems (Academic Press; London, 1967) pp. 109–113.Google Scholar
  37. 35.
    W. H. Zachariasen,J. Am. Chem. Soc. 54, 3841 (1932).Google Scholar
  38. 36.
    B. E. Warren,J. Am. Ceram. Soc. 21, 259 (1938);J. Appl. Phys. 13, 602 (1942).Google Scholar
  39. 37.
    J. M. Stevels,Handbook of Physics, Vol. 20, S. Flugge, ed. (Springer-Verlag, Berlin, 1957), p. 350.Google Scholar
  40. 38.
    J. Kruger and H. T. Yolken,Corrosion 20, 29t (1964).Google Scholar
  41. 39.
    F. P. Fehlner,Trans. 3rd Intern. Vac. Congr., Vol. 2 (Pergamon Press, Oxford, 1966), p. 691.Google Scholar
  42. 40.
    F. P. Fehlner,J. Electrochem. Soc. 115, 726 (1968).Google Scholar
  43. 41.
    T. N. Rhodin, Jr.,J. Am. Chem. Soc. 72, 5102 (1950);73, 3143 (1951).Google Scholar
  44. 42.
    R. K. Hart,Proc. Roy. Soc. (London) Ser. A 236, 68 (1956).Google Scholar
  45. 43.
    F. P. Fehlner,J. Appl. Phys. 38, 2223 (1967).Google Scholar
  46. 44.
    A. J. Rosenberg, J. N. Butler, and A. A. Menna,Surface Sci. 5, 17 (1966).Google Scholar
  47. 45.
    J. J. Chessick, Yung-Fang Yu, and A. C. Zettlemoyer,Solid/Gas Interface, Proc. 2nd Intern. Conf. Surf. Act. (Butterworths, London, 1957), p. 269.Google Scholar
  48. 46.
    F. W. Young, Jr., J. V. Cathcart, and A. T. Gwathmey,Ada Met. 4, 145 (1956).Google Scholar
  49. 47.
    J. A. Davies, B. Domeij, J. P. S. Pringle, and F. Brown,J. Electrochem. Soc. 112, 675 (1965).Google Scholar
  50. 48.
    A. U. Seybolt,Advan. Phys. 12, 1 (1963).Google Scholar
  51. 49.
    L. Young and F. G. R. Zobel,J. Electrochem. Soc. 113, 277 (1966).Google Scholar
  52. 50.
    J. A. Ramsey and G. F. J. Garlick,Brit. J. Appl. Phys. 15, 1353 (1964).Google Scholar
  53. 51.
    R. B. Laibowitz,Appl. Phys. Letters 13, 221 (1968).Google Scholar
  54. 52.
    F. W. Schmidlin,J. Appl. Phys. 37, 2823 (1966).Google Scholar
  55. 53.
    R. C. Jaklevic and J. Lambe,Phys. Rev. Letters 17, 1139 (1966).Google Scholar
  56. 54.
    N. F. Mott,Contemp. Phys. 10, 125 (1969).Google Scholar
  57. 55.
    T. A. Delchar, F. C. Tompkins, and F. S. Ham,Proc. Roy. Soc. (London),300, 141 (1967).Google Scholar
  58. 56.
    V. A. Shvets, V. M. Vorotyntsev, and V. B. Kazanskii,Kinet. Katal. 10, 356 (1969).Google Scholar
  59. 57.
    P. J. Jorgensen,J. Chem. Phys. 49, 1594 (1968).Google Scholar
  60. 58.
    M. Wyn Roberts,Quart. Rev. (London) 16, 71 (1962).Google Scholar
  61. 59.
    C. J. Dell'Oca and L. Young,Appl. Phys. Letters 13, 228 (1968);14, 332 (1969).Google Scholar
  62. 60.
    M. W. Roberts and B. R. Wells,Trans. Faraday Soc. 62, 1608 (1966).Google Scholar
  63. 61.
    W. A. Crossland and H. T. Roettgers,Phys. Failure Electron. 5, 158 (1966).Google Scholar
  64. 62.
    D. Michell and A. P. Smith,Phys. Stat. Sol. 27, 291 (1968).Google Scholar
  65. 63.(a)
    O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys (Butterworths. London, 1962) p. 53.Google Scholar
  66. 63.(b)
    O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys (Butterworths. London, 1962) p. 266.Google Scholar
  67. 64.
    J. V. Cathcart, G. F. Petersen, and C. J. Sparks,Surfaces and Interfaces, I. Chemical and Physical Characteristics, J. J. Burkeet al., eds. (Syracuse Univ. Press, Syracuse, 1967), p. 333.Google Scholar
  68. 65.
    D. A. Vermilyea,J. Electrochem. Soc. 110, 345 (1963).Google Scholar
  69. 66.
    L. Young,Anodic Oxide Films (Adademic Press, New York, 1961), p. 116.Google Scholar
  70. 67.
    J. Friedel,Dislocations (Pergamon Press, New York, 1964), p. 289.Google Scholar
  71. 68.
    H. P. Godard,J. Electrochem. Soc. 114, 354 (1967).Google Scholar
  72. 69.
    H. H. Uhlig,Acta Met. 4, 541 (1956).Google Scholar
  73. 70.
    K. R. Lawless and D. F. Mitchell,Mem. Sci. Rev. Met. 62, 27 (1965).Google Scholar
  74. 71.
    R. Cigna, J. S. Llewelyn Leach, and A. Y. Nehru,J. Electrochem. Soc. 113, 105 (1966).Google Scholar
  75. 72.
    Y. Nishi,Japan. J. Appl. Phys. 5, 333 (1966).Google Scholar
  76. 73.
    R. J. Archer and G. W. Gobeli,J. Phys. Chem. Solids 26, 343 (1965).Google Scholar
  77. 74.
    W. A. Alexander and L. M. Pidgeon,Can. J. Res. B 28, 60 (1959).Google Scholar
  78. 75.
    Yung-Fang Yu, J. J. Chessick, and A. C. Zettlemoyer,Advan. Catalysis 9, 415 (1957).Google Scholar
  79. 76.
    G. Cornoe and J. Sannier,Compt. Rend. 265, 57 (1967).Google Scholar
  80. 77.
    Kuan-Han Sun and M. L. Huggins,J. Phys. Colloid Chem. 51, 438 (1947).Google Scholar
  81. 78.
    F. D. Rossiniet al, Selected Values of Chemical Thermodynamic Properties, NBS Circular 500 (U.S. Government Printing Office, Washington, D.C., 1952).Google Scholar
  82. 79.
    R. V. Culver and F. C. Tompkins,Advan. Catalysis 11, 68 (1959).Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • F. P. Fehlner
    • 1
  • N. F. Mott
    • 2
  1. 1.Research and Development LaboratoryCorning Glass WorksCorning
  2. 2.Cavendish LaboratoryUniversity of CambridgeCambridgeEngland

Personalised recommendations