Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

High-temperature oxidation kinetics of Cu-Si alloys containing up to 4.75 wt.% Si in\(p_{{\text{O}}_{\text{2}} } \)=0.01 atm and pure CO2

Abstract

The oxidation of Cu-Si alloys (containing up to 4.75 wt. % Si) in\({\text{p}}_{O_2 } \)=0.01 atm from 800 to 1000°C has been investigated using thermogravimetry and other techniques. A 0.04% Si alloy followed a parabolic oxidation law with a rate similar to that of pure Cu. As the Si concentration increased the rate decreased and became irregular owing to SiO2 particles or flakes at the alloy-scale interface. It is considered that sintering of SiO2 particles and rupture of the sinter because of contraction during sintering are responsible for the irregular kinetics. A SiO2 layer forms directly on the 4.75% Si alloy which oxidizes uniformly. The SiO2 was always amorphous. In pure CO2 a similar pattern of amorphous SiO2 particles, flakes, and layers occurs.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    F. N. Rhines,Trans. Am. Inst. Min. Metall. Pet. Eng. 137, 246 (1940).

  2. 2.

    F. N. Rhines, W. A. Johnson, and W. A. Anderson,Trans. Am. Inst. Min. Metall. Pet. Eng. 147, 205 (1942).

  3. 3.

    J. L. Meijering, inAdvances in Materials Research, Vol. 5, H. Herman, ed. (Wiley, New York, 1971), pp. 1–83.

  4. 4.

    P. Bolsaitis and M. Kahlweit,Acta Metall. 15, 765 (1967).

  5. 5.

    S. K. Bhattacharyya and K. C. Russell,Metall. Trans. 7A, 453 (1976).

  6. 6.

    D. J. Pedder, E. D. Boyes, and G. C. Smith,Met. Sci. 10, 437 (1976).

  7. 7.

    C. S. Smith,Min. Metall. 11, 213 (1930);13, 481 (1932);J. Inst. Met. 46, 49 (1931).

  8. 8.

    J. Kapteijn, S. A. Couperus, and J. L. Meijering,Acta Metall. 17, 1311 (1969).

  9. 9.

    J. S. Dunn,J. Inst. Met. 46, 25 (1931).

  10. 10.

    J. P. Dennison and A. Preece,J. Inst. Met. 81, 229 (1952).

  11. 11.

    M. F. Ashby and G. C. Smith,J. Inst. Met. 91, 182 (1962).

  12. 12.

    J. W. Martin and G. C. Smith,J. Inst. Met. 83, 153 (1954).

  13. 13.

    N. Komatsu and N. J. Grant,Trans. Am. Inst. Min. Metall. Pet. Eng. 224, 705 (1962).

  14. 14.

    K. W. Frohlich,Z. Metallkd. 28, 368 (1936).

  15. 15.

    J. W. Evans and S. K. Chatterji,J. Electrochem. Soc. 106, 860 (1959).

  16. 16.

    H. A. H. Pray, I. Igelstrund, and G. L. Simund, U.S. Patent Number 2446060, 1948, Batteile Development Corp., Columbus, Ohio.

  17. 17.

    I. A. Menzies and W. J. Tomlinson,J. Iron Steel Inst. 204, 1239 (1966).

  18. 18.

    W. J. Tomlinson and J. Yates,J. Phys. Chem. Solids, 38, 1205 (1977).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tomlinson, W.J., Yates, J. High-temperature oxidation kinetics of Cu-Si alloys containing up to 4.75 wt.% Si in\(p_{{\text{O}}_{\text{2}} } \)=0.01 atm and pure CO2 . Oxid Met 12, 323–329 (1978). https://doi.org/10.1007/BF00603576

Download citation

Key words

  • Cu-Si alloys
  • oxidation
  • kinetics
  • silica