Oxidation of Metals

, Volume 3, Issue 3, pp 291–311 | Cite as

Oxidation of copper at high temperatures

  • S. Mrowec
  • A. Stokłosa
Article

Abstract

The kinetics and mechanism of copper oxidation have been measured over the temperature range 900–1050°C and the pressure range 5×10−3 to 8×10−1 atm. It has been shown that, at the pressures lower than the dissociation pressure of CuO, the oxide scale formed on flat fragments of the copper specimens is compact and composed of a single layer, adhering closely to the metallic base. Growth of the scale proceeds under these conditions by outward diffusion of metal. The rate of the process under the conditions for which single-phase scales are formed increases with increasing oxygen pressure according to the equation:
$${\text{k''}}_{\text{p}}^{} = const {\text{p}}_{{\text{O}}_{\text{2}} }^{{\text{1/3}}{\text{.9}}} $$
.

the activation energy for oxidation is 24 ± 2 kcal/mole. On the basis of theFueki-Wagner method and the method proposed in the present work, the self-diffusioncoefficients of copper in cuprous oxide were calculated as a functionof oxygen pressure and temperature. It has been shown that distribution of thedefect concentration in the growing layer of the scale is linear.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Kubaszewski and B. E. Hopkins,Oxidation of Metals and Alloys (Butterworths, London, 1962).Google Scholar
  2. 2.
    K. Hauffe,Reaktione in und an festen Stoffen (Springer-Verlag, Berlin, 1966), pp. 180, 640.Google Scholar
  3. 3.
    K. Hauffe,Oxydation von Metallen und Metallegierungen (Springer-Verlag, Berlin, 1956).Google Scholar
  4. 4.
    H. Dunwald and C. Wagner,Z. Physik. Chem. B 17, 467 (1932).Google Scholar
  5. 5.
    J. Günderman, K. Hauffe, and C. Wagner,Z. Physik. Chem. B 37, 148 (1937).Google Scholar
  6. 6.
    C. Wagner and H. Hammen,Z. Physik. Chem. B 40, 197 (1938).Google Scholar
  7. 7.
    C. Wagner and K. Grünewald,Z. Physik. Chem. B 40, 455 (1938).Google Scholar
  8. 8.
    A. Ronnguist and H. Fischmeister,J. Inst. Metals 89, 65 (1960–1961).Google Scholar
  9. 9.
    R. Tylecote,Metallurgia 53, 191 (1956).Google Scholar
  10. 10.
    F. Maak,Z. Metallk. 52, 538 (1961).Google Scholar
  11. 11.
    W. J. Moore and B. Selikson,J. Chem. Phys. 19, 1539 (1951);20, 927 (1952).Google Scholar
  12. 12.
    J. Bardeen, W. Brattain, and W. Schockley,J. Chem. Phys. 14, 714 (1946).Google Scholar
  13. 13.
    E. Engelhard,Ann. Phys. 17, 501 (1933).Google Scholar
  14. 14.
    H. Müser and Schilling,Z. Naturforsch. 7a, 211 (1952).Google Scholar
  15. 15.
    R. S. Toth, R. Kilkson, and D. Trivich,Phys. Rev. 122, 482 (1961).Google Scholar
  16. 16.
    M. O'Keeffe and W. J. Moore,J. Electrochem. Soc. 35, 1324 (1961).Google Scholar
  17. 17.
    W. J. Moore, Y. Ebisuzaki, and J. A. Sluss,J. Phys. Chem. 62, 1438 (1958).Google Scholar
  18. 18.
    J. P. Baur, W. D. Bridges, and W. M. Fassell,J. Electrochem. Soc. 103, 273 (1953).Google Scholar
  19. 19.
    D. W. Bridges, J. P. Baur, G. S. Baur, and W. M. Fassell.J. Electrochem. Soc. 103, 475 (1956).Google Scholar
  20. 20.
    M. O'Keeffe and J. Moore,J. Chem. Phys. 36, 3009 (1962).Google Scholar
  21. 21.
    S. Mrowec and A. Stokłosa,J. Thermal Anal 2, 75 (1970).Google Scholar
  22. 22.
    A. Brückman,Corrosion Sci. 7, 51 (1967).Google Scholar
  23. 23.
    S. Mrowec,Corrosion Sci. 7, 563 (1967).Google Scholar
  24. 24.
    D. L. Douglass,Oxidation of Metals 1, 127 (1969).Google Scholar
  25. 25.
    B. Lichter and C. Wagner,J. Electrochem. Soc. 107, 168 (1960).Google Scholar
  26. 26.
    J. Romański,Corrosion Sci. 8, 67 (1968).Google Scholar
  27. 27.
    N. Puling and R. Bedworth,J. Inst. Metals 29, 529 (1923).Google Scholar
  28. 28.
    S. Mrowec and A. Stokłosa,Werkstoffe Korrosion 21, 934 (1970).Google Scholar
  29. 29.
    R. F. Tylecote,J. Inst. Metals,78, 300 (1950).Google Scholar
  30. 30.
    G. Valensi,Pittsburgh International Conference of Surface Reactions, Pittsburgh, 1948, p. 156.Google Scholar
  31. 31.
    P. Kofstad,Nature 179, 1382 (1957).Google Scholar
  32. 32.
    L. Czerski, S. Mrowec, and T. Werber,Roczniki Chem. 38, 643 (1964).Google Scholar
  33. 33.
    O. Kubaszewski, E. Evans, and C. B. Alcock,Metallurgical Thermochemistry (Pergamon Press, Oxford, 1967), p. 421.Google Scholar
  34. 34.
    C. Landolt and A. Muan,J. Inorg. Nucl. Chem. 31, 1319 (1969).Google Scholar
  35. 35.
    G. C. Charette and S. N. Flangas,J. Electrochem. Soc. 115, 796 (1966).Google Scholar
  36. 36.
    L. R. Bidwell,J. Electrochem. Soc. 114, 30 (1967).Google Scholar
  37. 37.
    C. Wagner,Atom Movements (ASM, Cleveland, 1951), p. 153.Google Scholar
  38. 38.
    W. J. Moore and M. T. Shim,Ann. Physik Soc. 131st Mtg (1957), Abstract 47 R.Google Scholar
  39. 39.
    K. Fueki and J. B. Wagner, Jr.,J. Electrochem. Soc. 112, 384 (1965).Google Scholar
  40. 40.
    H. Engell,Acta Met. 6, 439 (1958).Google Scholar
  41. 41.
    H. Rickert,Z. Physik. Chem. 23, 355 (1960).Google Scholar
  42. 42.
    S. Mrowec, T. Walec, and T. Werber,Bull. Acad. Polon. Sci. Ser: Sci. Chim. 14, 179 (1966).Google Scholar
  43. 43.
    S. Mrowec,Roczniki Chem. 42, 1913 (1968).Google Scholar
  44. 44.
    S. Mrowec,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 15, 287 (1967).Google Scholar
  45. 45.
    J. Bloem,Philips Res. Rept. 13, 167 (1958).Google Scholar
  46. 46.
    A. Kroger,The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964), p. 577.Google Scholar
  47. 47.
    P. Kofstad,High-Temperature Oxidation of Metals (John Wiley, New York, 1968), p. 94.Google Scholar
  48. 48.
    E. S. Pettit,J. Electrochem. Soc. 113, 1249 (1966).Google Scholar
  49. 49.
    N. Mott and R. Gurney,Electronic Processes in Ionic Crystals (Oxford, London, 1948), p. 257.Google Scholar

Copyright information

© Plenum Publishing Corporation 1971

Authors and Affiliations

  • S. Mrowec
    • 1
  • A. Stokłosa
    • 1
  1. 1.School of Mining and MetallurgyInstitute of Solid State ChemistryCracowPoland

Personalised recommendations