Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Free-flow potential profile along rat kidney proximal tubule

  • 31 Accesses

  • 63 Citations

Summary

The transepithelial electrical potential difference across rat rena proximal tubule was reinvestigated, using improved techniques. To diminish tip potential artefacts the microelectrodes were filled with HCO3-Ringer's solution instead of 3 molar KCl. The error of the potential measurements with HCO3-Ringer's microelectrodes was tested and was found to be ≤0.5 mV. A significant electrical potential profile was detected along the proximal tubular lumen under free flow. From near zero at the glomerulum the potential difference rose to −1.5 mV, lumen negative, in the first tubular loop at approximately 0.1 to 0.3 mm of tubular length. It decreased then rapidly, changed sign and attained a maximum of ca. 2.0 mV, lumen positive, at 1 mm of tubular length, after which it declined gradually to +1.6 mV in the last accessible loop. The mean of 85 punctures in intermediate and late loops was+1.8, S.D.±0.33 mV, range+1.0 to+3.2 mV. On the basis of perfusion experiments described in the subsequent paper, the lumen-negative potential difference across early loops can be explained as an active transport potential. It is caused by the presence of glucose and amino acids in the glomerular filtrate, which increase the rate of active Na+ absorption over that of active HCO3 absorption. The lumen-positive potential difference in intermediate and late loops is explained as the sum of a membrane diffusion potential arising from the shift in intratubular Cl and HCO3 concentrations and a small lumen-positive active transport potential from H+ secretion/HCO3 absorption.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Adrian, R. H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.)133, 631–658 (1956)

  2. 2.

    Barratt, L. J., Rector, F. C., Jr., Kokko, J. P., Seldin, D. W.: Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J. clin. Invest.53, 454–464 (1974)

  3. 3.

    Baumann, K., Bode, F., Chan, Y. L., Goldner, A. M., Papavassiliou, F., Wagner, M.: Reabsorption ofd-glucose from various regions of the rat proximal convoluted tubule: Evidence that the proximal convolution is not homogeneous. Pflügers Arch. (in preparation)

  4. 4.

    Bento de Mello, G., Malnic, G.: Electrophysiological study of proximal tubules of rat kidney. Proc. IUPS9, 55 (1971)

  5. 5.

    Boulpaep, E. L., Seely, J. F.: Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Amer. J. Physiol.221, 1084–1096 (1971)

  6. 6.

    Frömter, E.: Progress in microelectrode techniques for kidney tubules. Yale J. Biol. Med.45, 414–425 (1972)

  7. 7.

    Frömter, E.: Electrophysiology and isotonic fluid absorption of proximal tubules of mammalian kidney. In: Kidney and urinary tract physiology, MTP. Int. Rev. Science, Physiol. Ser. I, Vol. 6, pp. 1–38 (1974)

  8. 8.

    Frömter, E.: The effect of inhibitors and diuretics on active transport potentials in rat kidney proximal tubule. In: Biochem. aspects of kidney function. Bern: Huber 1974 (in press)

  9. 9.

    Frömter, E., Geßner, K.: Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pflügers Arch.351, 85–98 (1974)

  10. 10.

    Frömter, E., Hegel, U.: Transtubuläre Potentialdifferenzen an proximalen und distalen Tubuli der Rattenniere. Pflügers Arch. ges. Physiol.291, 107–120 (1966)

  11. 11.

    Frömter, E., Lüer, K.: Free-flow potential profile along rat proximal tubule. Pflügers Arch.339, R47 (1973)

  12. 12.

    Frömter, E., Lüer, K.: Electrical studies on sugar transport kinetics of rat proximal tubule. Pflügers Arch.343, R 47 (1973)

  13. 13.

    Frömter, E., Müller, C. W., Knauf, H.: Fixe, negative Wandlungen im proximalen Konvolut der Rattenniere und ihre Beeinflussung durch Calciumionen. In: Symp. Gesellschaft für Nephrol. Aktuelle Probleme des Elektrolyt-und Wasserhaushalts, pp. 61–65. Wien: Verlag Wiener Med. Akademie 1968

  14. 14.

    Frömter, E., Müller, C. W., Wick, T.: Permeability properties of the proximal tubular epithelium of the rat kidney studied with electrophysiological methods. In: Electrophysiology of epithelial cells. G. Giebisch, ed., pp. 119–146, 115–117. Stuttgart-New York: F. K. Schattauer 1971

  15. 15.

    Frohnert, P. P., Höhmann, B., Zwiebel, R., Baumann, K.: Free-flow micropuncture studies of glucose transport in the rat nephron. Pflügers Arch.315, 66–85 (1970)

  16. 16.

    Györy, A. Z.: Reexamination of the split oil droplet method as applied to kidney tubules. Pflügers Arch.324, 328–343 (1971)

  17. 17.

    Györy, A. Z., Kinne, R.: Energy source for transepithelial sodium transport in rat renal proximal tubules. Pflügers Arch.327, 234–260 (1971)

  18. 18.

    Hegel, U., Frömter, E., Wick, T.: Der elektrische Wandwiderstand des proximalen Konvolutes der Rattenniere. Pflügers Arch. ges. Physiol.294, 274–290 (1967)

  19. 19.

    Le Grimellec, C.: Micropuncture study along the proximal convoluted tubule: Different electrolytes handlings in the first loops usually unaccessible to micropuncture. In: European Colloquium on Renal Physiology, Paris, Editions INSERM30, 177 (1974)

  20. 20.

    Kokko, J. P.: Proximal tubule potential difference. Dependence on glucose, HCO3 and amino acids. J. clin Invest.52, 1362–1367 (1973)

  21. 21.

    Rau, W. S., Frömter, E.: Electrical properties of the medullary collecting duct of the golden hamster kidney. I. The transepithelial potential difference. Pflügers Arch.351, 99–111 (1974)

  22. 22.

    Rohde, R., Deetjen, P.: R., Glucoseresorption in der Rattenniere. Mikropunktionsanalysen der tubulären Glucosekonzentration bei freiem Fluß. Pflügers Arch.302, 219–232 (1968)

  23. 23.

    Ullrich, K. J., Frömter, E., Baumann, K.: Micropuncture and microanalysis in kidney physiology. In: Laboratory techniques in membrane biophysics, H. Passow and R. Stämpfli, eds., pp. 106–129. Berlin-Heidelberg-New York: Springer 1969

  24. 24.

    Ussing, H. H., Zehran, K.: Active transport of sodium as the source of electric current in the short circuited isolated frog skin epithelium. Acta physiol. scand.23, 110–127 (1951)

  25. 25.

    Weise, M., Eisenbach, G. M., Stolte, H.: Mikropunktionsuntersuchungen über die renale Aminosäurenresorption. In: VIII Symposion der Gesellschaft f. Nephrologie, R. Heintz u. H. Holzhüter, Hrsg., pp. 641–648. Technische Hochschule Aachen 1972

  26. 26.

    Windhager, E. E., Giebisch, G.: Electrophysiology of the nephron. Physiol. Rev.45, 214–244 (1965)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frömter, E., Geßner, K. Free-flow potential profile along rat kidney proximal tubule. Pflugers Arch. 351, 69–83 (1974). https://doi.org/10.1007/BF00603512

Download citation

Key words

  • Renal Proximal Tubule
  • Transepithelial Electrical Potential Difference
  • Microelectrode Technique