Pflügers Archiv

, Volume 351, Issue 1, pp 61–67 | Cite as

The properties of ionic channels measured by noise analysis in thin lipid membranes

  • E. Neher
  • H. P. Zingsheim
Article

Summary

Noise analysis was performed on the membrane currents produced by the ion channel former gramicidin A in black lipid bilayer membranes. The average channel lifetime and the unit channel conductance can be determined from the autocorrelation function. The values agree with the independently obtained data from measurements of single channels. The dependence of this function on the channel density reveals information on the process of channel formation. The kinetic information is the same as that obtained by voltage clamp measurements.

Key words

Noise Analysis Ionic Channel Properties Gramicidin A Black Lipid Membranes Autocorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, C. R., Stevens, C. F.: Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at the frog neuromuscular junction. J. Physiol. (Lond.)235, 655–691 (1973)Google Scholar
  2. Bamberg, E., Läuger, P.: Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membrane Biol.11, 177–194 (1973)Google Scholar
  3. Chen, Y., Hill, T. L.: Fluctuations and noise in kinetic systems. Biophys. J.13, 1276–1295 (1973)Google Scholar
  4. Dern, H., Walsh, J. B.: Analysis of complex waveforms. In: Physical Techniques in Biological Research, Vol. VI, W. L. Nastuk, Ed. New York: Academic Press 1963Google Scholar
  5. Fishman, H. M.: Relaxation spectra of potassium channel noise from squid axon membranes. Proc. nat. Acad. Sci. (Wash.)70, 876–879 (1973)Google Scholar
  6. Groot, S. R., Mazur, P.: Non-Equilibrium Thermodynamics. Amsterdam: North-Holland Publ. Comp. 1962Google Scholar
  7. Haydon, D. A., Hladky, S. B.: Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Quart. Rev. Biophys.5, 187–282 (1972)Google Scholar
  8. Katz, B., Miledi, R.: The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. (Lond.)224, 665–699 (1972)Google Scholar
  9. Rice, S. O.: Mathematical analysis of random noise. Bell Syst. Techn. J.23, 282–332 (1944)Google Scholar
  10. Siebenga, E., Meyer, A. W. A., Verveen, A. A.: Membrane shot noise in electrically depolarized nodes of Ranvier. Pflügers Arch.341, 87–96 (1973)Google Scholar
  11. Stevens, C. F.: Inferences about membrane properties from electrical noise measurements. Biophys. J.12, 1028–1047 (1972)Google Scholar
  12. Urry, D. W.: The gramicidin A transmembrane channel: a proposedΠ L,D Helix. Proc. nat. Acad. Sci. (Wash.)68, 672–676 (1971)Google Scholar
  13. Urry, D. W., Goodall, M. C., Glickson, J. D., Mayers, D. F.: The gramicidin A transmembrane channel: characteristics of head-to-head dimerizedΠ L,D helices. Proc. nat. Acad. Sci. (Wash.)68, 1907–1911 (1971)Google Scholar
  14. Verveen, A. A., Derksen, H. E.: Fluctuation phenomena in nerve membrane. Proc. IEEE56, 906–916 (1968)Google Scholar
  15. Zingsheim, H. P., Neher, E.: The equivalence of fluctuation analysis and chemical relaxation measurements: a study of ion pore formation in thin lipid membranes. Biophys. Chem. (in print. 1974)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • E. Neher
    • 1
  • H. P. Zingsheim
    • 1
  1. 1.Max-Planck-Institut für biophysikalische Chemie (Karl-Friedrich-Bonhoeffer-Institut)Göttingen-NikolausbergGermany

Personalised recommendations