Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Changes in the basal ganglia and thalamus following reperfusion after complete cerebral ischaemia

  • 69 Accesses

  • 20 Citations

Abstract

We report specific changes bilaterally in the basal ganglia and thalamus following reperfusion after complete cerebral ischaemia. A 69-year-old man, resuscitated after cardiac arrest, showed symmetrical lowdensity lesions in the head of the caudate nucleus and lentiform nucleus on CT. MRI revealed methaemoglobin derived from minor haemorrhage in the basal ganglia and thalamus, not evident on CT. We suggest that this haemorrhage results from diapedesis of red blood cells through the damaged capillary endothelium following reperfusion.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Pulsinelli WA, Brierley JB, Plum F (1982) The profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

  2. 2.

    Pulsinelli WA (1985) Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res 63:29–37

  3. 3.

    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

  4. 4.

    Kirino T, Sano K (1984) Selective vulnerabiligy in the gerbil hippocampus following transient ischemia. Acta Neuropathol 62:201–208

  5. 5.

    Petito CK, Feldmann E, Pulsinelli WA, Plum F (1987) Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37:1281–1286

  6. 6.

    Brierly JB (1976) Cerebral hypoxia. In: Blackwood W, Corsellis AN (eds) Greenfield's neuropathology, 3rd edn. Edward Arnold, London, pp 41–85

  7. 7.

    Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374

  8. 8.

    Meldrum BS, Evans M, Griffith T, Simon R (1985) Ischaemic brain damage: the role of excitatory activity and of calcium entry. Br J Anaesth 57:44–46

  9. 9.

    Wieloch T (1985) Neurochemical correlates to selective neuronal vulnerability. Prog Brain Res 63:69–85

  10. 10.

    Kjos BO, Brant-Zawadzki M, Young RG (1983) Early CT findings of global central nervous system hypoperfusion. AJNR 4: 1043–1048, AJR 141: 1227–1232

  11. 11.

    Révész T, Geddes JF (1988) Symmetrical columnar necrosis of the basal ganglia and brain stem in an adult following cardiac arrest. Clin Neuropathol 7:294–298

  12. 12.

    Adams JH, Brierley JB, Connor RCR, Treip CS (1966) The effects of systemic hypotension upon the human brain. Clinical and neuropathological observations in 11 cases. Brain 89:235–268

  13. 13.

    Janzer RC, Friede RL (1980) Hypotensive brain stem necrosis or cardiac arrest encephalopathy? Acta Neuropathol 50:53–56

  14. 14.

    Gomori JM, Grossman RI, Goldberg HI, Zimmerman RA, Bilaniuk LT (1985) Intracranial hematomas: imaging by highfield MR. Radiology 157:87–93

  15. 15.

    Sartor K (1992) Vascular diseases-hemorrhage. In: Sartor K (ed) MR imaging of the skull and brain. A correlative text-atlas. Springer, Berlin Heidelberg New York, pp 496–497

  16. 16.

    Bryan RN, Levy LM, Whitlow WD, Killian JM, Preziosi TJ, Rosalio JA (1991) Diagnosis of acute cerebral infarction: comparison of CT and MR imaging. AJNR 12:611–620

  17. 17.

    Yoshizumi H, Fujibayashi Y, Kikuchi H (1993) A new approach to the integrity of blood-brain barrier functions of global ischemic rats-barrier and carrier functions. Stroke 24:279–285

  18. 18.

    Ames A III, Wright RL, Kowada M, Thurston JM, Manjo G (1968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52:437–453

  19. 19.

    Harrison MJG, Sedal BK (1975) No-reflow phenomenon in the cerebral circulation of gerbil. J Neurol Neurosurg Psychiatry 38:1190–1193

  20. 20.

    Hossman KA, Lechtape-Grüter H, Hossmann V (1973) The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z Neurol 204:281–299

  21. 21.

    Miller CL, Lampard DG, Alexander K, Brown WA (1980) Local cerebral blood flow following transient cerebral ischemia. 1. Onset of impaired reperfusion within the first hour following global ischemia. Stroke 11:534–541

  22. 22.

    Kågström E, Smith ML, Siesjö BK (1983) Local cerebral blood flow in the recovery period following complete cerebral ischemia in the rat. J Cereb Blood Flow Metabol 3:170–182

Download references

Author information

Correspondence to M. Fujioka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fujioka, M., Okuchi, K., Miyamoto, S. et al. Changes in the basal ganglia and thalamus following reperfusion after complete cerebral ischaemia. Neuroradiology 36, 605–607 (1994). https://doi.org/10.1007/BF00600418

Download citation

Key words

  • Magnetic resonance imaging
  • Basal ganglia
  • Thalamus
  • Complete cerebral ischaemia
  • Cardiac arrest