Journal of Materials Science

, Volume 28, Issue 7, pp 1910–1918 | Cite as

The effect of surface-limited microcracks on the effective Young's modulus of ceramics

Part III Experiments
  • Y. Kim
  • E. D. Case
  • S. Gaynor
Papers

Abstract

The effect of aligned Vickers indentation cracks upon the Young's modulus of polycrystalline alumina bars was investigated. The measured Young's modulus for indented specimens was compared with the theoretical predictions based on a variety of models, including a model developed by the authors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. D. Case andY. Kim,J. Mater. Sci. 28 (1993) 1885.Google Scholar
  2. 2.
    Idem, ibid. 28 (1993) 1901.Google Scholar
  3. 3.
    B. Budiansky andR. J. O'connell,Int. J. Solids Struct. 12 (1976) 81.Google Scholar
  4. 4.
    A. Hoenig,ibid. 15 (1979) 137.Google Scholar
  5. 5.
    N. Laws andJ. R. Brockenbrough,ibid. 23 (1987) 1247.Google Scholar
  6. 6.
    H. P. Kirchner andE. D. Issacson,J. Amer. Ceram. Soc. 65 (1982) 55.Google Scholar
  7. 7.
    H. P. Kirchner,ibid. 67 (1984) 347.Google Scholar
  8. 8.
    B. L. Symonds, R. F. Cook andB. R. Lawn,J. Mater. Sci. 18 (1983) 1306.Google Scholar
  9. 9.
    A. G. Evans andE. A. Charles,J. Amer. Ceram. Soc. 59 (1976) 371.Google Scholar
  10. 10.
    B. R. Lawn andD. B. Marshall,ibid. 62 (1979) 347.Google Scholar
  11. 11.
    G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,ibid. 64 (1981) 533.Google Scholar
  12. 12.
    F. Forster,Z. Metallkde 29(4) (1937) 109.Google Scholar
  13. 13.
    G. Pickett,ASTM Proc. 45 (1945) 846.Google Scholar
  14. 14.
    D. P. H. Hasselman, “Tables for the Computation of Shear Modulus and Young's Modulus of Elasticity from Resonant Frequencies of Rectangular Prisms” (Carborundum Co., Niagara Falls, New York, 1961).Google Scholar
  15. 15.
    S. Spinner andW. E. Tefft,ASTM Proc. 61 (1961) 1221.Google Scholar
  16. 16.
    Y. Kim, W. J. Lee andE. D. Case, “Reinforced Aluminosilicate Glass Ceramic Composite”, in “Metal and Ceramic Matrix Composites: Processing, Modeling and Mechanical Behavior”, Edited by R. B. Bhagat, A. H. Clauer, P. Kumar and A. M. Ritter (Minerals, Metals and Materials Society, Warrendale, PA, 1990) pp. 479–486.Google Scholar
  17. 17.
    Idem, in Proceedings of 5th Technical Conference, 1990, American Society for Composites (Technomic Press, Lancaster, PA, 1990) pp. 871–881.Google Scholar
  18. 18.
    Y. Kim andE. D. Case,J. Mater. Sci. 27 (1992) 1537.Google Scholar
  19. 19.
    W. J. Lee andE. D. Case,Mater. Sci. Engng A119 (1989) 113.Google Scholar
  20. 20.
    Idem, J. Mater. Sci. 25 (1990) 5043.Google Scholar
  21. 21.
    P. F. Becher, C. Hsueh, P. Angelini andT. N. Tiegs,J. Amer. Ceram. Soc. 71 (1988) 1050.Google Scholar
  22. 22.
    D. K. Shetty, I. G. Wright, P. N. Mincer andA. H. Clauer,J. Mater. Sci. 20 (1985) 1873.Google Scholar
  23. 23.
    E. Schreiber, O. L. Anderson andN. Soga, “Elastic Constants and Their Measurements” (McGraw-Hill, New York, 1974) Ch. 4.Google Scholar
  24. 24.
    D. B. Marshall andB. R. Lawn,J. Amer. Ceram. Soc. 63 (1980) 532.Google Scholar
  25. 25.
    E. R. Fuller, B. R. Lawn andR. F. Cook,ibid. 66 (1983) 314.Google Scholar
  26. 26.
    C. C. Chiu andE. D. Case,J. Mater. Sci. 27 (1992) 2353.Google Scholar
  27. 27.
    J. C. Wang,ibid. 19 (1984) 809.Google Scholar
  28. 28.
    K. K. Phani,J. Mater. Sci. Lett. 15 (1986) 747.Google Scholar
  29. 29.
    K. K. Phani andS. K. Niyogi,ibid. 5 (1986) 427.Google Scholar
  30. 30.
    G. Simmons andH. Wang, “Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook”, (MIT Press, Cambridge, Massachusetts, 1971) p. 329.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Y. Kim
    • 1
  • E. D. Case
    • 1
  • S. Gaynor
    • 1
  1. 1.Department of Metallugry, Mechanics and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations