Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Vergleichende Untersuchung zur Latenzrelaxation und Kontraktion des Skeletmuskels des forsches

Comparative study of latency relaxation and contraction of forg skeletal muscle

  • 23 Accesses

  • 2 Citations


Latency relaxation (LR) and contraction of frog skeletal muscle are compared with respect to their behavior on changes of temperature, low level activation by 1 mM caffeine and 15 mM K+ and calcium deprivation of extracellular medium. Temperature dependence of the amplitudes ofLR and contraction is different, whereas latency periods and rates of force development ofLR and contraction show identical temperature dependence, respectively. 1 mM caffeine increases contraction and decreasesLR. Besides a general decrease of both,LR and contraction in 15 mM K+ there is a specific diminution ofLR, as expressed by a shortening of latency period of contraction. In Ca++ deprived solution, in which Ca++ are substituted by an aquivalent quantity of Ni++,LR is relatively more reduced than contraction is. The experiments show, thatLR depends strongly on Ca++ concentration. The results are in accordance with the idea, theLR is caused by a change of elastic properties of intracellular structures of the muscle fibre; these structures might be “resting” cross bridges between the contractile filaments as well as longitudinal sarcoplasmic reticulum. This interpretation agrees with the findings of Hill (1968) and Lännergren (1971) on elastic behavior of skeletal muscle and single fibres of skeletal muscle.

This is a preview of subscription content, log in to check access.


  1. Ashley, C. C., Ridgway, E. B.: On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres. J. Physiol. (Lond.)209, 105–130 (1970)

  2. Bücking, J., Herbst, M., Piontek, P.: Über den Einfluß der Ca++-Konzentration auf die Latenzrelaxation des Skeletmuskels. Z. Naturforsch.127 d, 86 (1972)

  3. Curtis, B. A.: mSome effects of Ca-free choline-ringer solution on frog skeletal muscle. J. Physiol. (Lond.)166, 75–86 (1963)

  4. Curtis, B. A.: Calcium efflux from frog twitch muscle fibers. J. gen. Physiol.55, 243–253 (1970)

  5. Edman, K. A. P., Grieve, D. W.: On the role of calcium in the excitation-contraction process of frog sartorius muscle. J. Physiol. (Lond.)170, 138–152 (1964)

  6. Fischman, D. A., Swan, R. C.: Nickel substitution for calcium in excitation-contraction coupling of skeletal muscle. J. gen. Physiol.50, 1709–1728 (1967)

  7. Frank, G. B.: Utilization of bound calcium in the action of caffeine and certain multivalent cations on skeletal muscle. J. Physiol. (Lond.)163, 254–268 (1962)

  8. Geddes, L. N. E., Mailman, D. S.: Contrasting twitch and latency relaxation in skeletal muscle. Comp. Biochem. Physiol.44A, 693–710 (1973)

  9. Hill, A. V.: The influence of temperature on the tension developed in an isometric twitch. Proc. roy. Soc. B138, 349–354 (1951)

  10. Hill, D. K.: Tension due to interaction between the sliding filaments in resting striated muscle. The effect of stimulation. J. Physiol. (Lond.)199, 637–684 (1968)

  11. Jenden, D. J., Reger, J. F.: The role of resting potential changes in the contractile failure of frog sartorius muscles during calcium deprivation. J. Physiol. (Lond.)169, 889–901 (1963)

  12. Jöbsis, F. F., O'Connor, M. J.: Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. biophys. Res. Commun.25, 246–252 (1966)

  13. Lännergren, J.: The effect of low-level activation on the mechanical properties of the isolated frog muscle fibers. J. gen. Physiol.58, 145–162 (1971)

  14. Lännergren, J., Noth, J.: Tension in isolated frog muscle fibres induced by hypertonic solutions. J. gen. Physiol.61, 158–175 (1973)

  15. Lowy, J., Sten-Knudsen, O.: Latency relaxation in invertebrate muscles. Acta physiol. scand.59, Suppl.213 89–90 (1963)

  16. Matsumura, M.: On the nature of the latency relaxation of frog skeletal muscle. Jap. J. Physiol.19, 701–711 (1969)

  17. Mulieri, L. A.: The dependence of the latency relaxation on sarcomere length and other characteristics of isolated muscle fibres. J. Physiol. (Lond.)223, 333–354 (1972)

  18. Pauschinger, P., Lorkovič, H., Brecht, K.: Wirkungen des Ca-Entzuges auf das Membranpotential und die mechanische Aktivität der isolierten phasischen Skeletmuskelfaser des Froches. Pflügers Arch. ges. Physiol.278, 541–552 (1964)

  19. Sandow, A.: Studies on the latent period of muscular contraction. Method. General properties of latency relaxation. J. Cell Physiol.24, 221–256 (1944)

  20. Sandow, A.: Latency relaxation and a theory of muscular mechano-chemical coupling. Ann. N. Y. Acad. Sci.47, 895–927 (1947)

  21. Sandow, A.: Latency relaxation: A brief analytical review. MCV Quart.2, 82–89 (1966)

  22. Sandow, A., Kahn, A. J.: The immediate effects of potassium on responses of skeletal muscle. J. cell. comp. Physiol.40, 89–114 (1952)

  23. Sandow, A., Taylor, St. R., Preiser, H.: Role of the action potential in excitation-contraction coupling. Fed. Proc.24, 1116–1124 (1965)

  24. Shear, D. B.: The electrical double layer, long range forces and muscle contraction. Physiol. Chem. and Physics1, 495–508 (1969)

  25. Vos, E. C., Frank, G. B.: Events occuring in the region of the threshold for potassium-induced contractures of frog skeletal muscle. Changes in elasticity and oxygen consumption. Canad. J. Physiol. Pharmacol.50, 179–187 (1972)

  26. Weber, A., Herz, R.: The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. gen. Physiol.52, 750–759 (1968)

  27. Weber, A., Herz, R., Reiss, I.: The regulation of myofibrillar activity by calcium. Proc. roy. Soc. B.160, 489–501 (1964)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herbst, M., Piontek, P. Vergleichende Untersuchung zur Latenzrelaxation und Kontraktion des Skeletmuskels des forsches. Pflugers Arch. 346, 61–73 (1974).

Download citation

Key words

  • Latency Relaxation
  • Contraction
  • Low Level Activation
  • Elastic Properties of Skeletal Muscle