Advertisement

Pflügers Archiv

, Volume 347, Issue 3, pp 223–234 | Cite as

Renal blood flow after temporary ischemia of rat kidneys

Renal venous outflow and clearance techniques
  • Georg M. Eisenbach
  • Barbara Kitzlinger
  • Michael Steinhausen
Article

Summary

Total renal blood flow (RBF-dir) and total renal resistance were determined in acutely uninephrectomized rats by measuring the renal venous outflow after catheterizing the renal vein. Renal vein catheterization and the procedure involved caused an initial fall in C-IN and C-PAH followed by a steady level over an experimental period of 2–3 h. Absolute and fractional water excretion increased approx. 9-fold during that time. Mean RBF-dir was 14.2±0.67 (N=13) ml/min×kg BW×1 kidney. In another series of animals acute renal damage was induced by subjecting the kidneys to a 60 min period of temporary ischemia 3 days prior to use. RBF-dir decreased 10%, total renal resistance increased 11%, neither parameter being significantly different from controls. The clearance of inulin and PAH, the extraction ratio of PAH, and the urine flow rate were depressed to about 10% of control (P<0.001). A considerable discrepancy was found between data obtained by clearance methods and RBF-dir after ischemia: The ratio RPF-PAH/RPF-dir was 1.05 under control conditions and was significantly depressed to 0.47 (P<0.005) after ischemia.—These results indicate that a general increase in resistance of the vasa afferentia alone cannot be responsible for the oliguric phase. At least two important factors are involved in the cause of oliguria 3 days after temporary ischemia: Backdiffusion of tubular fluid through the damaged tubular epithelium and a decrease in GFR.—Clearance methods are not considered to be reliable determinants of GFR and RPF in renal failure after temporary ischemia.

Key words

Kidney Renal Blood Flow Acute Renal Failure Renal Resistance Clearance Techniques Renal Venous Outflow Temporary Ischemia of the Kidney 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, Y.: Intrarenal blood flow distribution and autoregulation of renal blood flow and glomerular filtration rate. Jap. Circulat. J.10, 1163–1173 (1971)Google Scholar
  2. 2.
    Andreucci, V. E., Herrera-Acosta, J., Rector, F. C., Seldin, D. W.: Effective glomerular filtration pressure and single nephron filtration rate during hydropenia, elevated ureteral pressure, and acute volume expansion with isotonic saline. J. clin. Invest.50, 2230–2234 (1971)Google Scholar
  3. 3.
    Ayer, G., Grandchamp, A., Wyler, T., Truninger, B.: Intrarenal hemodynamics in glycerol-induced myohemoglobinuric acute renal failure in the rat. Circulat. Res.29, 128–135 (1971)Google Scholar
  4. 4.
    Bálint, P., Fekete, A., Forgacs, J.: Quantitative considerations on the storage of clearance substances in the kidney. Clin. Sci.26, 345–350 (1964)Google Scholar
  5. 5.
    Bálint, P., Fekete, A., Hársing, L., Harza, T.: Postischemie renal failure and intrarenal distribution of blood flow. Acta physiol. Acad. Sci. hung.36, 203–214 (1969)Google Scholar
  6. 6.
    Bank, N., Mutz, B. F., Aynedjian, Y.: The role of “leakage” of tubular fluid in anuria due to mercury poisoning. J. clin. Invest.46, 695–704 (1967)Google Scholar
  7. 7.
    Barenberg, R. L., Solomon, S., Papper, S., Anderson, R.: Clearance and micropuncture study of renal function in mercuric chloride treated rats. J. Lab. clin. Med.42, 473–484 (1968)Google Scholar
  8. 8.
    Biber, T. U. L., Mylle, M., Baines, A. S., Gottschalk, C. W., Oliver, J. R., MacDowell, M. C.: A study by micropuncture and microdissection of acute renal damage in rats. Amer. J. Med.44, 664–705 (1968)Google Scholar
  9. 9.
    Bratton, A. C., Marshall, E. K.: A new coupling component for sulfanilamide determination. J. biol. Chem.128, 537–550 (1939)Google Scholar
  10. 10.
    Brenner, B. M., Troy, J. L., Daugharty, T. M.: The dynamics of glomerular ultrafiltration in the rat. J. clin. Invest.50, 1776–1779 (1971)Google Scholar
  11. 11.
    Chedru, M. F., Baethke, R., Oken, D. E.: Renal cortical blood flow and glomerular filtration in myohemoglobinuric acute renal failure. Kidney Internat.1, 232–239 (1972)Google Scholar
  12. 12.
    Deetjen, P., Sonnenberg, H.: Der tubuläre Transport von p-Aminohippursäure. Mikroperfusionsversuche am Einzelnephron der Rattenniere in situ. Pflügers Arch. ges. Physiol.285, 35–44 (1965)Google Scholar
  13. 13.
    Eisenbach, G. M., Steinhausen, M.: Micropuncture studies after temporary ischemia of rat kidneys. Pflügers Arch.343, 11–25 (1973)Google Scholar
  14. 14.
    Flanigan, W. J., Oken, D. E.: Renal micropuncture study of the development of anuria of the rat with mercury-induced acute renal failure. J. clin. Invest.44, 449–457 (1965)Google Scholar
  15. 15.
    Fuehr, J., Kaczmarczyk, J., Krüttgen, C. D.: Eine einfache Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin. Wschr.33, 729–730 (1955)Google Scholar
  16. 16.
    Gertz, K. H., Brandis, M., Braun-Schubert, G., Boylan, J. W.: The effect of saline infusion and hemorrhage on glomerular filtration pressure and single nephron filtration rate. Pflügers Arch.310, 193–205 (1969)Google Scholar
  17. 17.
    Gomez, D. M.: Evaluation of renal resistances, with special reference to changes in essential hypertension. J. clin. Invest.30, 1143–1155 (1951)Google Scholar
  18. 18.
    Henry, L. N., Lane, C. E., Kashgarian, M.: Micropuncture studies of the pathophysiology of acute renal failure in the rat. Lab. Invest.19, 309–314 (1968)Google Scholar
  19. 19.
    Hinshaw, L. B.: Autoregulation in normal and pathological states including shock and ischemia. Circulat. Res.29, Suppl.1, 46–50 (1971)Google Scholar
  20. 20.
    Jaenike, J. R.: Micropuncture study of methemoglobin-induced acute renal failure in the rat. J. Lab. clin. Med.73, 459–468 (1969)Google Scholar
  21. 21.
    Kramer, K., Lochner, W., Wetterer, E.: Methods of measuring blood flow. In: Handbook of Physiology, Circulation, Washington, D. C. Amer. Physiol. Soc. 1963, sect. 2, vol. 2, pp. 1277–1324.Google Scholar
  22. 22.
    Ljungquist, A., Wagermark, J.: The adrenergic innervation of intrarenal glomerular and extraglomerular circulatory routes. Nephron7, 218–229 (1970)Google Scholar
  23. 23.
    Mályusz, M., Girndt, J., Mályusz, G., Ochwadt, B.: Die Metabolisierung von p-Aminohippurat in Nieren von normalen Ratten und Ratten mit experimentellem Goldblatt-Hochdruck. Pflügers Arch.333, 156–165 (1972)Google Scholar
  24. 24.
    Oken, D. E., Arce, M. L., Wilson, D. R.: Glycerol-induced hemoglobinuric acute renal failure in the rat. I. Micropuncture study of the development of anuria. J. clin. Invest.45, 724–735 (1966)Google Scholar
  25. 25.
    Oken, D. E., DiBona, G. F., McDonald, F. D.: Micropuncture studies of the recovery phase of myohemoglobinuric acute renal failure in the rat. J. clin. Invest.49, 730–737 (1970)Google Scholar
  26. 26.
    Ruiz-Guinazu, A., Coelho, J. B., Paz, R. A.: Methemoglobin-induced acute renal failure in the rat. Nephron4, 257–275 (1967)Google Scholar
  27. 27.
    Schulz, W., Schwarz, W., Hutten, H.: Vergleichende Durchblutungsmessungen an der Rattenniere zur Reproduzierbarkeit von Kr-85 Auswaschkurven. Pflügers Arch.312, 206–219 (1969)Google Scholar
  28. 28.
    Selkurt, E. E.: Comparison of renal clearances with direct renal blood flow under control conditions and following ischemia. Amer. J. Physiol.145, 376 to 386 (1946)Google Scholar
  29. 29.
    Selkurt, E. E.: The renal circulation. In: Handbook of Physiology, Circulation, Washington, D. C., Amer. Physiol. Soc. 1963, sect. 2, vol. 2, pp. 1457–1516Google Scholar
  30. 30.
    Smith, H. W.: Note on the interpretation of clearance methods in diseased kidneys. J. clin. Invest.20, 631–635 (1941)Google Scholar
  31. 31.
    Smith, H. W.: The Kidney, structure in health and disease, p. 595 ff. New York: Oxford University Press 1951Google Scholar
  32. 32.
    Snedecor, G. W., Cochran, W. G.: Statistical methods, 6th ed. Ames, Iowa: The Iowa State University Press 1971Google Scholar
  33. 33.
    Steinhausen, M.: Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo und ihre Anwendung zur Bestimmung tubulärer Strömungsgeschwindigkeiten. Pflügers Arch. ges. Physiol.277, 23–35 (1963)Google Scholar
  34. 34.
    Steinhausen, M., Eisenbach, G. M., Böttcher, W.: High-frequency microcinematographic measurements on peritubular blood flow under control conditions and after temporary ischemia of rat kidneys. Pflügers Arch.339, 273–288 (1973)Google Scholar
  35. 35.
    Steinhausen, M., Eisenbach, G. M., Helmstadter, V.: Concentration of Lissamine green in proximal tubules of antidiuretic and mercury poisoned rats and the permeability of these tubules. Pflügers Arch.311, 1–15 (1969)Google Scholar
  36. 36.
    Thurau, K., Wober, E.: Zur Lokalisation der autoregulativen Widerstandsänderungen in der Niere. Pflügers Arch. ges. Physiol.274, 553–566 (1962)Google Scholar
  37. 37.
    Trueta, J., Barclay, A. E., Franklin, K. J., Daniel, P. M., Prichard, M. M. L.: Studies of the renal circulation. Nuffield Inst. Med. Res., Oxford. Springfield, Ill.: Ch. C. Thomas 1947Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Georg M. Eisenbach
    • 1
  • Barbara Kitzlinger
    • 1
  • Michael Steinhausen
    • 1
  1. 1.I. Physiologisches Institut der Universität HeidelbergGermany

Personalised recommendations