Advertisement

Histochemistry

, Volume 71, Issue 1, pp 53–65 | Cite as

Histological and immunohistochemical studies of the endocrine cells of the gastrointestinal mucosa of the toad (Bufo regularis)

  • M. El-Salhy
  • L. Grimelius
  • E. Wilander
  • G. Abu-Sinna
  • G. Lundqvist
Article

Summary

Using histological and immunhistochemical techniques, nine endocrine cell types were observed in the mucosa of the gastrointestinal tract of the toad,Bufo regularis, viz. enterochromaffin, somatostatin, glucagon, pancreatic polypeptide (PP), secretin, gastric inhibitory peptide (GIP), gastrin-C-terminal pentapeptide (GTPP), neurotensin and bombesin cells. The enterochromaffin cells were distributed throughout the gastrointestinal tract except the rectum. Somatostatin, glucagon, PP, secretin, GIP and GTPP cells were observed both in the ileum and bombesin cells only in the pyloric and antral parts of the stomach. Immunostaining of consecutive sections did not reveal more than one polypeptide hormone in any of these cell types. It is concluded from the present results that the toad gastrointestinal mucosa contains endocrine cell types that are more or less homologous to those in the mammal alimentary tract, though some of them exhibit a different topographic distribution.

Keywords

Polypeptide Gastrointestinal Tract Glucagon Immunohistochemical Study Secretin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alumets J, Håkanson R, Sundler F, Chang K-J (1978) Leu-enkephalin-like material in nerves and enterochromaffin cells in the gut. Histochemistry 56:187–196Google Scholar
  2. Assan R, Tchobroutsky G, Rosselin G (1969) Caractérisation radio-immunologique de glucagon dans les tissues digestifs de diverses expèces animales. Pathol Biol 17:747–755Google Scholar
  3. Bloom SR, Polak JM (1978) Gut hormone overview. In: Bloom SR (ed) Gut hormones. Churchill Livingstone, Edinburgh London New York, pp 3–18Google Scholar
  4. Buchan BMJ, Bryant MG, Polak JM, Bloom SR, Pearse AGE (1980) The distribution of vasoactive intestinal polypeptide (VIP) in the amphibian intestine. Gen Comp Endocrinol 40:349–350Google Scholar
  5. Buffa R, Crivelli O, Fiocca R, Fontana P, Solcia E (1979) Complement-mediated unspecific binding of immunoglobulins to some endocrine cells. Histochemistry 63:15–21Google Scholar
  6. Carraway R, Leeman SE (1976) Radioimmunoassay for neurotensin, a hypothalamic peptide. J Biol Chem 251:7035–7044Google Scholar
  7. Dockray GJ (1977) Molecular evolution of gut hormones: Application of comparative studies on the regulation of digestion. Gastroenterology 72:344–358Google Scholar
  8. Erlandsen SL, Parsons JA, Burke JP, Redick JA, Van Orden DE, Van Orden LS (1975) A modification of the unlabeled antibody enzyme method using heterologous antisera for the light microscopic and ultrastructural localization of insulin, glucagon and growth hormone. J Histochem Cytochem 23:666–677Google Scholar
  9. Falkmer S, Stefan Y (1978) Pancreatic polypeptide (PP): phylogenetic aspects in gastrointestinal mucosa and endocrine pancreas. Scand. J Gastroenterol 13:(Suppl) 49:59Google Scholar
  10. Falkmer S, Elde RP, Hellerström C, Petersson B, Efencid S, Fohlman J, Siljevall J-B (1977) Some phylogenetical aspects on the occurrence of somatostatin in the gastro-entero-pancreatic endocrine system. A histological and immunocytochemical study, combined with quantitative radioimmunological assays of tissue extracts. Arch Histol Jpn 40:(Suppl) 99–117Google Scholar
  11. Falkmer S, Elde RP, Hellerström C, Petersson B (1978) Phylogenetic aspects of somatostatin in the gastro-entero-pancreatic (GEP) endocrine system. Metabolism 27:(Suppl) 1193–1196Google Scholar
  12. Falkmer S, Ebert R, Arnold R, Creutzfeldt W (1980a) Some phylogenetic aspects of the Enterionsular axis with particular regard to the appearance of the gastric inhibitory polypeptide. Front Horm Res 7:1–16Google Scholar
  13. Falkmer S, Fahrenkrug J, Alumets F, Håkanson R, Sundler F (1980b) vasoactive intestinal polypeptide (VIP) in epithelial cells of the gut mucosa of an elasmobranchian cartilaginous fish, the ray. Endocrinol Jpn 1:401–405Google Scholar
  14. Gabe M (1972) Données histologiques sur les cellules endocrines gastro-duodenales des amphibiens. Arch Histol Jpn 35:51–81Google Scholar
  15. Geuze JJ (1971) Light and electron microscopic observations on the gastric mucosa of the frog (Rana esculenta). 1. Normal structure. Z Zellforsch 117:87–102Google Scholar
  16. Gibson RG, Mikas AA, Colvin HW, Hirschowitz BI (1976) The search for submammalian gastrins: The identification of amphibian gastrin. Proc Soc Exp Biol Med 53:284–288Google Scholar
  17. Grimelius L (1968) A silver nitrate staining for α2-cells in human pancreatic islets. Acta Soc Med Ups 73:243–270Google Scholar
  18. Grimelius L, Wilander E (1980) The importance of silver impregation for the study of endocrine cells of the gut and pancreas. Invest Cell Pathol 3:3–12Google Scholar
  19. Grimelius L, Polak JM, Solcia E, Pearse AGE (1978) The enteroglucagon cell. In: Bloom SR (ed) Gut hormones. Churchill Livingstone, Edinburgh, pp 365–368Google Scholar
  20. Grube G, Forssmann WG (1979) Morphology and function of the entero-endocrine cells. Horm Metab Res 11:589–606Google Scholar
  21. Hellerström C, Hellman B (1960) Some aspects of the silver impregnation of the islets of Langerhans in the rat. Acta Endocrinol 35:518–532Google Scholar
  22. Ito S, Takai K, Shibata A, Matsubara Y, Yanihara N (1979) Met-enkephalin-immunoreactive and gastrin-immunoreactive cells in the human and canine pyloric antrum. Gen Comp Endocrinol 38:238–245Google Scholar
  23. Kataoka K (1974) An electron microscopic study of the gastro-entric endocrine cells of the frog,Rana nigromaculata. In: Fujita T (ed) Symposium on the GEP endocrine system. Georg Thieme, Stuttgart, pp 39–48Google Scholar
  24. Larsson L-I (1980) On the possible existence of multiple endocrine, paracrine and neurocrine messengers in secretory cell systems. Invest Cell Pathol 3:73–85Google Scholar
  25. Larsson L-I, Rehfeld JF (1977a) Characterization of antal gastrin cells with region-specific antisera. J Histochem Cytochem 25:1317–1321Google Scholar
  26. Larsson L-I, Rehfeld JF (1977b) Evidence for a common evolutionary origin of gastrin and cholecystokinin. Nature 269:335–338Google Scholar
  27. Larsson L-I, Polak JM, Buffa R, Sundler F, solcia E (1979) On the immunocytochemical localization of the vasoactive intestinal polypeptide. J Histochem Cytochem 27:936–938Google Scholar
  28. Lechago J, Holmquist AL, Rosenquist GL, Walsh JH (1978) Localization of bombesin-like peptides in frog gastric mucosa. Gen Comp Endocrinol 36:553–558Google Scholar
  29. Nakajima T, Sasuhara T, Tshikawa O (1979) New frog skin peptides homologous to the ranatensin or bombesin family. In: Miyoshi A (ed) Gut peptides, secretion, function, and clinical aspects. Elsevier/North Holland, Amsterdam, pp 14–18Google Scholar
  30. Polak JM, Bloom SR (1979) The hormones of the gastrointestinal tract. In: Duthie HL and Wormsley KG (eds) Scientific basis of gastroenterology. Churchill Livingstone, Edinburgh London New York, pp 71–111Google Scholar
  31. Polak JM, Sullivan SN, Bloom SR, Fancer P, Pearse AGE (1977) Enkephalin-like immunoreactivity in the human gastrointestinal tract. Lancet 1:972–974Google Scholar
  32. Polak JM, Buchan AMJ, Czykowsky W, Solcia E, Bloom SR, Pearse AGE (1978) Bombesin in the gut. In: Bloom SR (ed) Gut hormones. Churchill Livingstone Edinburgh London New York, pp 541–543Google Scholar
  33. Rehfeld JF (1978) Immunochemical studies on cholecystokinin. 1. Development of sequence-specific radioimmunoassay for porcine triacontatria-peptide cholecystokinin. J Biol. Chem 253:4016–4021Google Scholar
  34. Reinecke M, Almasan K, Carraway R, Helmstaedter V, Forssmann WG (1980a) Distribution patterns of neurotensin-like immunoreactive cells in the gastro-intestinal tract of higher vertebrates. Cell Tissue Res 205:383–395Google Scholar
  35. Reinecke M, Carraway RE, Falkmer S, Feurle GE, Forssmann WG (1980b) Occurrence of neurotensin immunoreactive cells in the digestive tract of lower vertebrates and deuterostomian invertebrates. A correlated immunohistochemical and radioimmunochemical study. Cell Tissue Res 212:173–182Google Scholar
  36. Sevier A, Munger B (1965) A silver method for paraffin sections of neural tissue. J Neuropathol Exp Neurol 24:130–135Google Scholar
  37. Singh I (1964) A modofication of the Masson-Hamperl method for staining of argentaffin cells. Anat Anz 115:81–82Google Scholar
  38. Solcia E, Vasallo G, Capella C (1968) Selective staining of endocrine cells by basic dyes after acid hydrolysis. Stain Technol 43:257–263Google Scholar
  39. Solcia E, Capella C, Vasallo G (1969) Lead haematoxylin as a stain for endocrine cells. Significance of staining and comparison with other selective methods. Histochemie 20:116–126Google Scholar
  40. Sternberger LA (1974) Immunocytochemistry. Prentice Hall, Englewood Cliffs NJGoogle Scholar
  41. Van Noorden S, Falkmer S (1980) Gut-islet endocrinology. Some evolutionary aspects. Invest Cell Pathol 3:21–35Google Scholar
  42. Van Noorden S, Polak JM (1979) Hormones of the alimentary tract. In: Barrington EJW (ed) Hormones and evolution Academic Press, New York, pp 791–828Google Scholar
  43. Van Noorden S, Polak JM, Negri L, Pearse AGE (1977) Common peptides in brain, intestine and skin, evolution and significance. J Endocrinol 75:33–34Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • M. El-Salhy
    • 1
  • L. Grimelius
    • 1
  • E. Wilander
    • 1
  • G. Abu-Sinna
    • 1
  • G. Lundqvist
    • 1
  1. 1.Departments of Pathology and Clinical ChemistryUniversity HospitalUppsalaSweden

Personalised recommendations