Advertisement

Pflügers Archiv

, Volume 324, Issue 4, pp 288–296 | Cite as

Influence of luminal diameter and flow velocity on the isotonic fluid absorption and36Cl permeability of the proximal convolution of the rat kidney

  • H. W. Radtke
  • G. Rumrich
  • S. Klöss
  • K. J. Ullrich
Article

Summary

In the first experimental series proximal convolutions of the rat kidney were perfused with a modified Ringer solution and the isotonic fluid absorption was measured. In a second series the tubule was perfused with equilibrium solution which contained36Cl and the chloride permeability was determined. By the recollection method each individual tubule was perfused twice either at constant luminal diameter but different perfusion rates (10:30 or 6:16 nl/min) or at constant perfusion rates but different luminal diameters (20:30 μ). The perfusate was recollected at two different sites which were at least 500 μ distant from the infusion site.

The isotonic fluid absorption as well as the36Cl permeability was unchanged when the tubule was distended from 20–30 μ. Both, however, increased about 20% when the perfusion rate was increased 3-fold.

The data led to the following conclusions: 1. It is unlikely that there is a flow reactor type dependence of proximal tubular transport on flow rate. 2. The tubular distension cannot be responsible for the glomerulo-tubular balance. 3. It is more advantageous to relate permeability data of the rat nephron to tubular length. 4. In microperfusion experiments non steady sampling does not affect transepithelial fluxes per unit tubular length, provided that the pump delivery is constant.

Key-Words

Renal Microperfusion Isotonic Reabsorption Tracer Permeability Glomerulo Tubular Balance 

Schlüsselwörter

Renale Mikroperfusion Isotone Resorption Tracerpermeabilität Glomerulotubuläre Balance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumann, K., Holzgreve, H., Peters, R., Rumrich, G., Ullrich, K. J.: Unidirektionale Flüsse für24Na,42K,45Ca,38Cl,82Br und131J im proximalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.289, R 77 (1966).Google Scholar
  2. 2.
    Brenner, B. M., Benett, C. M., Berliner, R. W.: The relationship between glomerular filtration rate and sodium reabsorption by the proximal tubule of the rat nephron. J. clin. Invest.47, 1358–1374 (1968).Google Scholar
  3. 3.
    —, Keimowitz, R. J., Wright, F. S., Berliner, R. W.: An inhibitory effect of furosemide on sodium reabsorption by the proximal tubule of the rat nephron. J. clin. Invest.48, 290–300 (1969).Google Scholar
  4. 4.
    Brunner, F. P., Rector, F. C., Seldin, D. W.: Mechanism of glomerulotubular balance. II. Regulation of proximal tubular reabsorption by tubular volume, as studied by stopped-flow microperfusion. J. clin. Invest.45, 603–611 (1966).Google Scholar
  5. 5.
    Burg, M. B., Orloff, J.: Control of fluid absorption in the renal proximal tubule. J. clin. Invest.47, 2016–2024 (1968).Google Scholar
  6. 6.
    Frömter, E.: Permeability properties of proximal tubular epithelium of the rat kidney as studied by electrophysiological techniques. In: Symposia Medica Hoechst, Series 1970. Stuttgart-New York: F. K. Schattauer (in press) (1970).Google Scholar
  7. 6a.
    —: Elektrophysiologische Untersuchungen am proximalen Tubulus der Rattenniere. Habilitationsschrift, Johann Wolfgang Goethe-Universität, Frankfurt a. M. 1970.Google Scholar
  8. 7.
    Gertz, K. H., Manogs, J. A., Braun, G., Pagel, H. D.: On the glomerular tubular balance in the rat kidney. Pflügers Arch. ges. Physiol.285, 360–372 (1965).Google Scholar
  9. 8.
    Giebisch, G.: Functional organization of proximal and distal tubular electrolyte transport. Nephron6, 260 (1969).Google Scholar
  10. 9.
    —, Klose, R. M., Malnic, G., Sullivan, W. J., Windhager, E. E.: Sodium movement across single perfused proximal tubules of rat kidneys. J. gen. Physiol.47, 1175 (1964).Google Scholar
  11. 10.
    Györy, A. Z.: Reexamination of the split oil dropled method as applied to kidney tubulus. Pflügers Arch.324, 328–343 (1971).Google Scholar
  12. 11.
    Kedem, O., Essig, A.: Isotope flows and flux ratios in biological membranes. J. gen. Physiol.48, 1047–1070 (1965).Google Scholar
  13. 12.
    Kelman, R. B.: A theoretical note on exponential flow in the proximal part of the mammalian nephron. Bull. Path. Biophys.24, 303–317 (1962).Google Scholar
  14. 13.
    Lewy, J., Windhager, E. E.: Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Amer. J. Physiol.214, 943–954 (1968).Google Scholar
  15. 14.
    Loeschke, K., Baumann, K.: Kinetische Studien der D-Glukoseresorption im proximalen Konvolut der Rattenniere. Pflügers Arch.305, 139–154 (1969).Google Scholar
  16. 15.
    Morel, F., Murayama, Y.: Simultaneous measurement of unidirectional and net sodium fluxes in microperfused rat proximal tubules. Pflügers Arch.320, 1–23 (1970).Google Scholar
  17. 16.
    Morgan, T., Berliner, R. W.: In vivo perfusion of proximal tubules of the rat: Glomerulotubular balance. Amer. J. Physiol.217, 992–997 (1969).Google Scholar
  18. 17.
    Rector, F. C., Brunner, F. P., Seldin, D. W.: Mechanism of glomerulotubular balance. I. Effect of aortic constriction and elevated uretero pelvic pressure on glomerular filtration rate, fractional reabsorption, transit time and tubular size in the proximal tubule of the rat. J. clin. Invest.45, 590–602 (1966).Google Scholar
  19. 18.
    Rouffignac, de C., Bonvalet, J. P.: Etude chez le rat des variations du débit individuel de filtration glomérulaire des néphrons superficiels et profonds en fonction de l'apport sode. Pflügers Arch.317, 141–156 (1970).Google Scholar
  20. 19.
    Sauer, F.: Permeability characteristics of the mammalian nephron. Part II. In: Handbook of physiology, Executive Editor: Stephen R. Geiger. Editors: R. W. Berliner, and J. Orloff, Am. Physiol. Society. Baltimore: The Williams and Wilkins Comp. (in press).Google Scholar
  21. 20.
    Schnermann, J., Horster, M., Levine, D. Z.: The influence of sampling technique on the micropuncture determination of GFR and reabsorption characteristics of single rat proximal tubules. Pflügers Arch.309, 48–58 (1969).Google Scholar
  22. 21.
    —, Levine, D. Z., Horster, M.: A direct evaluation of the Gertz hypothesis on single rat proximal tubules in vivo: Failure of the tubular volume to the role determinant of the reabsorption rate. Pflügers Arch308, 149–165 (1969).Google Scholar
  23. 22.
    —, Wahl, M., Liebau, G., Fischbach, H.: Balance between tubular flow rate and net fluid absorption in the proximal convolution of the rat kidney. Pflügers Arch.304, 90–103 (1968).Google Scholar
  24. 23.
    Tsofina, L. M., Liberman, E. A., Babakov, A. V.: Production of bimolecular protein-lipid membranes in aqueous solution. Nature (Lond.)212, 681–683 (1966).Google Scholar
  25. 24.
    Uhlich, E., Halbach, R., Ullrich, K. J.: Einfluß von Aldosteron auf den Ausstrom markierten Natriums aus den Sammelrohren der Ratte. Pflügers Arch.320, 261–264 (1970).Google Scholar
  26. 25.
    Ullrich, K. J.: Permeability characteristics of the mammalian nephron. In: Handbook of Physiology. Executive Editor: Stephen R. Geiger. Editors: R. W. Berliner, and J. Orloff. Am. Physiol. Society. Baltimore: The Williams and Wilkins Comp. (in press).Google Scholar
  27. 26.
    —, Frömter, E., Baumann, K.: Micropuncture and microanalysis in kidney physiology. In: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Stämpfli (Edit.) Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  28. 27.
    —, Rumrich, G., Baldamus, C. A.: Mode of urea transport across the mammalian nephron. In: Urea and the kidney. Proc. of an International Colloquy held at Sarasota, Florida, 9–12 Sept. 1968. Editor: Bodil Schmidt-Nielsen. Amsterdam: Excerpta Medical Foundation 1970.Google Scholar
  29. 27a.
    Ullrich, K. J., Baldamus, C. A., Frömter, E., Luer, K., Radtke, H. W., Rumrich, G., Sauer, F.: Transport parameters for sodium, chloride, and bicarbonate in the proximal tubules of the rat kidney. (In press.)Google Scholar
  30. 28.
    Wahl, M., Liebau, G., Fischbach, H., Schnermann, J.: Balance between tubular flow rate and net fluid absorption in the proximal convolution of the rat kidney. Pflügers Arch.304, 297–314 (1968).Google Scholar
  31. 29.
    Walser, M.: Reversible stimulation of sodium transport in the toad bladder by stretch. J. clin. Invest.48, 1714–1723 (1969).Google Scholar
  32. 30.
    Wiederholt, M., Hierholzer, K., Windhager, E. E., Giebisch, G.: Microperfusion study of fluid reabsorption in proximal tubules of rat kidney. Amer. J. Physiol.213, 809–818 (1967).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • H. W. Radtke
    • 1
  • G. Rumrich
    • 1
  • S. Klöss
    • 1
  • K. J. Ullrich
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt a. M. 70Germany

Personalised recommendations