Pflügers Archiv

, Volume 314, Issue 4, pp 292–311 | Cite as

Effects of carbon dioxide, bicarbonate and pH on lactate and pyruvate in the brain of rats

  • J. Weyne
  • G. Demeester
  • I. Leusen
Article

Summary

The influence of acute changes inPaCO2on lactate concentration in brain and blood was studied in hypercapnic and hypocapnic rats. Lactate in brain increases markedly whenPCO2is acutely decreased by severe hyperventilation. Compared with the observations in normal rats, the lactate response to an intense hypocapnia was decreased in animals maintained 24 hours in hypoxic alkalosis and increased after 24 hours hypercapnia. The results are discussed in relation to the hypothesis that the lactate concentration response in brain in these conditions is related to local pH. Incubation studies of brain tissue, in whichPCO2or (and) [HCO3] were varied, show that lactate and pyruvate concentration and glucose consumption increase while the lactate/pyruvate ratio decreases when the pH of the incubation fluid is augmented. In an iso-pH system, lactate and pyruvate concentration, glucose consumption and L/P ratio increase with increasing [HCO3]. The possible mechanisms and the possible importance of these metabolic variations are discussed.

Key-Words

Brain Acid-base Equilibrium Brain Lactate Tissue Buffer Capacity Acid-base Equilibrium 

Schlüsselwörter

Hirn, Laktat und Pyruvat Laktat und Pyruvat im Hirn Milchsäure im Hirn Hirn, Säure-Basen-Gleichgewicht Säure-Basen-Gleichgewicht und Milchsäure im Hirn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, S. C., Cohen, P. J., Wollman H, Smith, T. C., Reivich, M., Vandermolen, R. A.: Cerebral carbohydrate metabolism during hypocarbia in man. Anesthesiology26, 624–632 (1965).Google Scholar
  2. —, Smith, T.C., Strobel, G., Stephen, G. W., Wollman, H.: Cerebral carbohydrate metabolism in man during respiratory and metabolic alkalosis. J. appl. Physiol.24, 66–72 (1968).Google Scholar
  3. Bain, J. A., Klein, J. R.: Effect of carbon dioxide on brain glucose, lactate, pyruvate and phosphates. Amer. J. Physiol.158, 478–484 (1949).Google Scholar
  4. Barker, S. B., Summerson, W. H.: The colorimetric determination of lactic acid in biological material. J. biol. Chem.138, 535–554 (1941).Google Scholar
  5. Biddulph, C., van Fossan, D. D., Criscuolo, D., Clark, R. T.: Lactic acid concentration of brain tissues of dogs exposed to hypoxemia and/or hypocapnia. J. appl. Physiol.13, 486–490 (1958).Google Scholar
  6. Brown, E. B. Jr.: Changes in brain pH response to CO2 after prolonged hypoxic hyperventilation. J. appl. Physiol.2, 549–552 (1950).Google Scholar
  7. Canzanelli, A., Greenblatt, M., Rogers G. A., Rapport, D.: The effect of pH changes on the in-vitro O2 consumption of tissues. Amer. J. Physiol.127, 290–295 (1939).Google Scholar
  8. Cohen, P. J., Alexander, S. C., Smith, T. C., Reivich, M., Wollman, H.: Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J. appl. Physiol.23, 183–194 (1967).Google Scholar
  9. Craig, F. N.: The effect of carbon dioxide tension on the metabolism of cerebral cortex and medulla oblongata. J. gen. Physiol.27, 325–338 (1943).Google Scholar
  10. Dixon, M., Needham, D. M.: Biochemical research on chemical warfare agents. Nature (Lond.)158, 432–438 (1946).Google Scholar
  11. Domonkos, J., Huszak, I.: Effect of hydrogen-ion concentration on the carbohydrate metabolism of brain tissue. J. Neurochem.4, 238–243 (1959).Google Scholar
  12. Friedemann, T. E., Haugen, G. E.: Pyruvic acid. II. The determination of keto acids in blood and urine. J. biol. Chem.147, 415–442 (1943).Google Scholar
  13. Fritz, P. J.: Rabbit lactate dehydrogenate isoenzymes: effect of pH on activity. Science156, 82–83 (1967).Google Scholar
  14. Geiger, A., Gombos, G., Otzuki, S.: The effect of hypoxemia on the metabolic pattern of the perfused brain of cats. In: Selective vulnerability of the brain in hypoxemia. Ed. J. P. Scladé, and W. H. McMenemey. Philadelphia: Davis 1963.Google Scholar
  15. Gevers, W., Dowdle, E.: The effect of pH on glycolysis in vitro. Clin. Sci.25, 343–349 (1963).Google Scholar
  16. Giebiesch, G., Berger, L., Pitts, R. F.: The extrarenal response to acute acid-base disturbances of respiratory origin. J. clin. Invest.34, 231–245 (1955).Google Scholar
  17. Granholm, L., Siesjo, B. K.: Signs of cerebral hypoxia in hyperventilation. Experientia (Basel)24, 337–338 (1968).Google Scholar
  18. Graubarth, H., Mackler, B., Guest, G. M.: Effects of acidosis on utilization of glucose in erythrocytes and leucocytes. Amer. J. Physiol.172, 301–308 (1953).Google Scholar
  19. Kaasik, A. E., Nilsson, L., Siesjo, B. K.: Acid-base and lactate/pyruvate changes in brain and C. S. F. in asphyxia and stagnant hypoxia. Scand. J. Lab. clin. Invest. Suppl. 102, III, c (1968).Google Scholar
  20. Kaplan, M. O.: In: Evolving genes and proteins (edit. by V. Bryson and H. J. Vogel), p. 343. New York: Academic Press 1965.Google Scholar
  21. Katzman, R., Villee, C. A., Beecher, H. K.: Effect of increased carbon dioxide concentrations on fixed acid production in vitro. Amer. J. Physiol.172, 317–323 (1953).Google Scholar
  22. Kazemi, H., Shannon, D. C., Carvallo-Gil, E.: Brain CO2 buffering capacity in respiratory acidosis and alkalosis. J. appl. Physiol.22, 241–246 (1967).Google Scholar
  23. Lassen, N. A.: Cerebral blood flow and oxygen consumption in man. Physiol. Rev.39, 183–238 (1959).Google Scholar
  24. Leusen, I.: Aspects of the acid-base balance between blood and cerebrospinal fluid. In: Cerebrospinal fluid and the regulation of ventilation. Ed.: C. Mc C. Brooks, F. F. Kao, and B. B. Lloyd. Oxford: Blackwell Scientific Publications 1965.Google Scholar
  25. —, Demeester, G.: Lactate and pyruvate in the brain of rats during hyperventilation. Arch. internat. Physiol. Biochem.74, 25–34 (1966).Google Scholar
  26. ——, Lacroix, E.: Lactate and pyruvate in the brain of rats during changes in acid-base balance. Arch. internat. Physiol. Biochem.74, 528–531 (1966).Google Scholar
  27. —, Lacroix, E., Demeester, G.: Lactate and pyruvate in the brain of rats during changes in acid-base balance. Arch. internat. Physiol. Biochem.75, 310–324 (1967).Google Scholar
  28. -Leusen, I., Weyne, J., Demeester, G.: Acid/base and Lactate/pyruvate changes in CSF and brain. Scand. J. Lab. clin. Invest. Suppl. 102,I, G (1968).Google Scholar
  29. Lowry, O. H., Passonneau, J. V.: The relationships between substrates and enzymes of glycolysis in brain. J. biol. Chem.239, 31–42 (1964).Google Scholar
  30. Mackler, B., Guest, G. M.: Effects of acidosis on utilization of fructose and glucose in the isolated rat diaphragm. Amer. J. Physiol.174, 487–490 (1953).Google Scholar
  31. Plum, F., Posner, J. B.: Blood and cerebrospinal fluid lactate during hyperventilation. Amer. J. Physiol.212, 864–870 (1967).Google Scholar
  32. Ponten, U.: Acid-base changes in rat brain tissue during acute respiratory acidosis and baseosis. Acta physiol. scand.68, 152–163 (1966).Google Scholar
  33. —, Siesjo, B. K.: Gradients of CO2 tension in the brain. Acta physiol. scand.67, 129–140 (1966).Google Scholar
  34. Posner, J. B., Plum, F.: Independence of blood and cerebrospinal fluid lactate. Arch. Neurol. (Chic.)16, 492–496 (1967).Google Scholar
  35. Scheuer, J., Berry, M. N.: Effect of alkalosis on glycolysis in the isolated rat heart. Amer. J. Physiol.213, 1143–1148 (1967).Google Scholar
  36. Severinghaus, J. W., Mitchell, R. A., Richardson, B. W., Singer, M. M.: Respiratory control at high altitude suggesting active transport regulation of CSF pH. J. appl. Physiol.18, 1155–1166 (1963).Google Scholar
  37. Siesjo, B. K.: The relation between the bicarbonate concentration in blood plasma and in brain tissue. Experientia (Basel)20, 455–456 (1964).Google Scholar
  38. —, Kjallquist, A., Zwetnow, N.: The C. S. F. lactate/pyruvate ratio in cerebral hypoxia. Life Sci.7, 45–52 (1968).Google Scholar
  39. —, Ponten, U.: Acid-base changes in the brain in nonrespiratory acidosis and alkalosis. Exp. Brain Res.2, 176–190 (1966).Google Scholar
  40. Tobin, R. B.: In vivo influences of hydrogen ions on lactate and pyruvate of blood. Amer. J. Physiol.207, 601–605 (1964).Google Scholar
  41. Trivedi, B., Danforth, W. H.: Effect of pH on the kinetics of frog muscle phosphofructokinase. J. biol. Chem.241, 4110–4112 (1966).Google Scholar
  42. Ui, M.: A role of phosphofructokinase in pH dependent regulation of glycolysis. Biochim. biophys. Acta (Amst.)124, 310–322 (1966).Google Scholar
  43. van Vaerenbergh, P., Demeester, G., Leusen, I.: Lactate in cerebrospinal fluid during hyperventilation. Arch. internat. Physiol. Biochem.73, 738–747 (1965).Google Scholar
  44. Weyne, J., Demeester, G., Leusen, I.: Bicarbonate and chloride shifts in rat brain during acute and prolonged respiratory acid-base changes. Arch. internat. Physiol. Biochem.76, 415–433 (1968a).Google Scholar
  45. ———: Brain and blood lactate during acute and prolonged respiratory acidosis and alkalosis. Arch. internat. Physiol. Biochem.76, 157–159 (1968b).Google Scholar
  46. —, Leusen, I.: pH effects on lactate and pyruvate production by incubated brain tissue. Arch. internat. Physiol. Biochem.77, 356–358 (1969).Google Scholar
  47. Zwetnow, N.: Effects of intracranial hyperventilation: acid-base changes and lactate changes in C. S. F. brain tissue. Scand. J. Lab. clin. Invest. Suppl. 102, III: D (1968).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • J. Weyne
    • 1
  • G. Demeester
    • 1
  • I. Leusen
    • 1
  1. 1.Laboratory of Normal and Pathological PhysiologyState University of GhentBelgium

Personalised recommendations