Biochemical Genetics

, Volume 29, Issue 5–6, pp 215–239 | Cite as

Genetic control and expression of the major ejaculatory bulb protein (PEB-me) inDrosophila melanogaster

  • Michael Z. Ludwig
  • Ilya I. Uspensky
  • Andrew I. Ivanov
  • Maria R. Kopantseva
  • Christem M. Dianov
  • Natalia A. Tamarina
  • Leonid I. Korochkin
Article

Abstract

PEB-me is a predominant protein of matureDrosophila melanogaster ejaculatory bulbs. It is resolved into four or five closely spaced subfractions (apparent molecular weight 35–39 kD) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Four electrophoretic variants of PEB-me differing in apparent molecular weight by 200–800 daltons were found. These appear to be controlled by four alleles of a gene (peb) located by recombination and deletion mapping to the 60F1-2 region of chromosome 2. A minor ejaculatory bulb protein of ca. 80 kD (hPEB) was found to be immunochemically related to PEB and possibly encoded bypeb. PEB is not detected by immunoblotting techniques in virgin females, in male tissues other than the ejaculatory bulb, or during developmental stages preceding the formation of this organ. The results of transplantations of genital imaginal discs and of immature ejaculatory bulbs between two strains having different PEB alleles suggest that the ejaculatory bulb is the site of PEB synthesis. In flies mutant fortra, tra-2, dsx, orix, tissue specificity of PEB localization is retained and the protein is found whenever the ejaculatory bulb is formed, regardless of the chromosomal sex of the fly. The protein is transferred into the female genital duct during mating, where it can be detected for up to 12 hr. Possible functions of PEB inDrosophila reproduction are discussed.

Key words

Drosophila melanogaster tissue-specific protein sex-specific protein genetic mapping genetic polymorphism reproduction-associated protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bairati, A. (1968). Structure and ultrastructure of male reproductive system inDrosophila melanogaster Meig. 2. The genital duct and accessory glands.Monit. Zool. Ital. 2105.Google Scholar
  2. Bairati, A., and Perotti, M. (1970). Occurrence of a compact plug in the genital duct ofDrosophila females after mating.Dros. Inform. Serv. 4567.Google Scholar
  3. Bartlett, R. J., Shaner, A., and Jackson, L. L. (1985). cis-Vaccenyl acetate as an aggregation pheromone inDrosophila melanogaster.J. Chem. Ecol. 111747.Google Scholar
  4. Bodenstein, D. (1950). The postembryonic development ofDrosophila. In Biology ofDrosophila (ed. M. Demerec), p. 275. John Wiley and Sons, New York.Google Scholar
  5. Bownes, M., and Hodson, B. (1980). Mutant fs(1)1163 ofDrosophila melanogaster alters yolk protein secretion from the fat body.Mol. Gen. Genet. 180411.Google Scholar
  6. Brieger, G., and Butterworth, F. (1970).Drosophila melanogaster: Identify of male lipid in reproductive system.Science 167167.Google Scholar
  7. Butterworth, F. (1969). Lipids inDrosophila: A newly detected lipid in the male.Science 1631356.Google Scholar
  8. Caggese, C., Caizzi, R., Bozzetti, M. P., Barsanti, P., and Ritossa, F. (1988). Genetic determinants of glutamine synthetase inDrosophila melanogaster: A gene for glutamine synthetase I resides in the 21B3-6 region.Biochem. Genet. 26571.Google Scholar
  9. Chapman, K., and Wolfner, M. F. (1988). Determination of male-specific gene expression inDrosophila accessory glands.Dev. Biol. 126195.Google Scholar
  10. Chen, P. S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., and Bohlen, P. (1988). A male accessory gland peptide that regulates reproductive behavior of femaleD. melanogaster.Cell 54291.Google Scholar
  11. Cheney, C. M., and Lang, T. J. (1988). Developmental and protein modification defects caused by mutations in theDrosophila gene 1(3)c21R.Dev. Biol. 130551.Google Scholar
  12. Cochrane, B., and Richmond, R. C. (1979). Studies of esterase 6 inDrosophila melanogaster. I. The genetics of a posttranslational modification.Biochem. Genet. 17167.Google Scholar
  13. DiBenedetto, A. J., Lakich, D., Kruger, W., Belote, J., Baker, B., and Wolfner, M. (1987). Sequences expressed sex-specifically inDrosophila melanogaster adults.Dev. Biol. 119242.Google Scholar
  14. Ephrussi, B., and Beadle, G. W. (1936). A technique for transplantation forDrosophila.Am. Nat. 70218.Google Scholar
  15. Fowler, G. L. (1973). Some aspects of the reproductive biology inDrosophila: Sperm transfer, sperm storage and sperm utilization.Adv. Genet. 17293.Google Scholar
  16. Francis, R. T., Davie, I., Sayre, M., Rocha, E., Ziemer, F., and Riedel, G. (1984). Efficient method for visualization and isolation of proteins resolved in polyacrylamide gels.J. Chromatogr. 298115.Google Scholar
  17. Fung, S.-T. C., and Gowen, J. W. (1957). Pigment-inducing potentialities of testes, ovaries and hermaphroditic (HR) gonads.J. Exp. Zool. 135505.Google Scholar
  18. Gilbert, D. G. (1981). Studies of esterase 6 inDrosophila melanogaster. VIII. Ejaculate esterase 6 and initial sperm use by females.J. Insect Physiol. 27641.Google Scholar
  19. Gilbert, D. G., Richmond, R. C., and Sheehan, K. B. (1981a). Studies of esterase 6 inDrosophila melanogaster. V. Progeny production and sperm use in females inseminated by males having null or active alleles.Evolution 3521.Google Scholar
  20. Gilbert, D. G., Richmond, R. C., and Sheehan, K. B. (1981b). Studies of esterase 6 inDrosophila melanogaster. VII. The timing of remating in females inseminated by males having null or active alleles.Behav. Genet. 11195.Google Scholar
  21. Girard, P., Mazzei, G., Wood, J., and Kuo, J. (1985). Polyclonal antibodies to phospholipid/Cadependent protein kinase and immunocytochemical localization of the enzyme in rat brain.Proc. Natl. Acad. Sci USA 823030.Google Scholar
  22. Hawkes, R., Niday, E., and Gordon, J. (1982). A dot-immunobinding assay for monoclonal and other antibodies.Anal. Biochem. 119142.Google Scholar
  23. Hughes, R. C. (1983).Glycoproteins Chapman and Hall, London, New York.Google Scholar
  24. Kopantseva, M. R., Ludwig, M. Z., Uspensky, I. I., Tamarina, N. A., Tsatrian, V. V., and Korochkin, L. I. (1990). Ejaculatory bulb proteins in variousDrosophila species.Zhurnal Obschei Biologii 51125 (in Russian).Google Scholar
  25. Kuzin, B. A., Aronshtam, A. A., and Korochkin, L. I. (1975). Studies on the determination of the Est-6 expression in male genitalia ofDrosophila melanogaster.Ontogenez 6323 (in Russian).Google Scholar
  26. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227680.Google Scholar
  27. Lindsley, D. L., and Grell, E. M. (1968). Genetic variations ofDrosophila melanogaster. Carnegie Inst. Wash. Publ. No. 627.Google Scholar
  28. Lindsley, D. L., and Zimm, G. (1987). The genome ofDrosophila melanogaster.Dros. Inform. Serv. 65224.Google Scholar
  29. Ludwig, M. Z., Filinova, M. R., and Korochkin, L. I. (1984). Genetic and biochemical properties of the EB-1 protein inDrosophila virilis.Dokl. Acad. Nauk USSR 279220 (in Russian).Google Scholar
  30. Ludwig, M. Z., Uspensky, I. I., Ivanov, A. I., Tamarina, N. A., and Korochkin, L. I. (1989). Comparative genetic and biochemical characterization of PEB—the major protein constituent of the ejaculatory bulb inDrosophila species of the melanogaster subgroup.Dokl. Acad. Nauk USSR 30437 (in Russian).Google Scholar
  31. Mane, S. D., Tompkins, L., and Richmond, R. C. (1983). Male esterase 6 catalyzes the synthesis of a sex pheromone inDrosophila melanogaster.Science 222419.Google Scholar
  32. Markow, T. A., and Ankney, P. F. (1988). Insemination reaction found in species whose males contribute material to oocyte before fertilization.Evolution 421097.Google Scholar
  33. Monsma, S. A., and Wolfner, M. F. (1988). Structure and expression of aDrosophila male accessory gland gene whose product resembles a peptide pheromone precursor.Genes Dev. 21063.Google Scholar
  34. Oakley, B., Kirsch, D., and Morris N. (1980). A simplified ultrasensitive silver stain for detection of proteins in polyacrylamide gels.Anal. Biochem. 105361.Google Scholar
  35. Schwassner, W., and Weissmann, C. (1973). A rapid, sensitive and specific method for the detection of proteins in dilute solutions.Anal. Biochem. 56502.Google Scholar
  36. Segrest, J. P., and Jackson, R. (1972). Molecular weight determination of glycoproteins by polyacrylamide gel electrophoresis in sodium dodecyl sulfate.Methods Enzymol. 28(B)54.Google Scholar
  37. Towbin, H., and Gordon, J. (1984). Immunoblotting and dot immunobinding—current status and outlook.J. Immunol. Methods 72313.Google Scholar
  38. Vander Meer, R., Obin, M., Sheehan, K., Zawistowski, S., and Richmond, R. C. (1986). A reevaluation of the role of cis-vaccenil acetate, cis-vaccenil alcohol and esterase 6 in the regulation of mated female sexual attractiveness inDrosophila melanogaster.J. Insect Physiol. 32681.Google Scholar
  39. Weber, K., and Osborn, M. (1969). The reliability of molecular weight determinations by dodecyl sulfate, polyacrylamide gel electrophoresis.J. Biol. Chem. 2444406.Google Scholar
  40. Whalen, M., and Wilson, T. G. (1986). Variation and genomic localization of genes encodingD. melanogaster male accessory gland proteins separated by SDS-Na PAAG electrophoresis.Genetics 11477.Google Scholar
  41. Wolfner, M.F. (1988). Sex-specific gene expression in somatic tissues ofDrosophila melanogaster.Trends Genet. 4333.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Michael Z. Ludwig
    • 1
  • Ilya I. Uspensky
    • 1
  • Andrew I. Ivanov
    • 2
  • Maria R. Kopantseva
    • 1
  • Christem M. Dianov
    • 1
  • Natalia A. Tamarina
    • 1
  • Leonid I. Korochkin
    • 1
  1. 1.Department of Molecular Biology of DevelopmentKoltzov Institute of Developmental BiologyMoscowUSSR
  2. 2.Department of GeneticsKoltzov Institute of Developmental BiologyMoscowUSSR

Personalised recommendations