Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Orientale multi-ringed basin interior and implications for the petrogenesis of lunar highland samples

  • 128 Accesses

  • 122 Citations


The lunar Orientale basin and its associated facies formed as a result of impact into lunar highland crustal rocks. The crater rim is shown to be closely represented by the position of the outer Rook Mountain ring, approximately 620 km in diam. The inner Rook Mountains form a central peak ring within the crater. The 900 km diam Cordillera ring is a fault scarp which formed in the terminal stages of the cratering event as a large portion of the crust collapsed inward toward the recently excavated crater, forming a mega-terrace. This collapse pushed the wall of the Orientale crater inward, distorting it and slightly decreasing its radius.

A domical facies is almost exclusively developed between the Cordillera and outer Rook rings. The domical facies is interpreted to be radially textured ejecta which was disrupted and modified to a jumbled domical texture by seismic shaking associated with the formation of the mega-terrace. The plains and corrugated facies pre-date the mare fill and lie within the Orientale crater. These facies are interpreted to have been deposited contemporaneously with the cratering event as partial and total impact melts which collected on the floor of the crater during the terminal stages of the event. The plains facies, with an estimated thickness of ∼ 1 km and a volume of ∼ 75000 km3, represent the most thoroughly impact melted materials which collected and ponded in the central portion of the crater floor. The corrugated facies, with an estimated thickness of ∼ 1 km and a volume of ∼ 180000 km3, represent impact partial melts mixed with debris. A relatively small volume of mare material was subsequently deposited in the basin (probably less than 25000 km3 in Mare Orientale).

There is little evidence that the basin has undergone major structural modifications subsequent to the terminal stages of the cratering event. The striking implication for the Orientale gravity anomaly is that mascon formation may be primarily related to crustal excavation and upwarping of a ‘moho’ plug, rather than attributable to post-impact mare filling.

The plains units on the floor of Orientale are similar to Cayley-like plains in other multi-ringed basins and on smaller crater floors. Impact melt deposits may therefore be a significant source of Cayley-like plains units.

The volumes of impact melt associated with the Orientale basin and their mode of deposition have important implications for petrogenetic models. Multi-ringed basin formation provides a mechanism for instantaneously melting large volumes of shallow to intermediate depth lunar crustal material which is emplaced such that the differentiation and crystallization of a variety of igneous rock types and textures may occur.

This is a preview of subscription content, log in to check access.


  1. Baldwin, R. B.: 1963,The Measure of the Moon, University of Chicago Press, Chicago, 488 pp.

  2. Baldwin, R. B.: 1969,Icarus 11, 320–331.

  3. Baldwin, R. B.: 1972,Phys. Earth Planetary Int. 6, 327–339.

  4. Baldwin, R. B.: 1974, ‘On the Origin of the Mare Basins’,Lunar Science V, The Lunar Sci, Inst. p. 31.

  5. Beals, C. S.: 1965,Ann. N. Y. Acad. Sci. 123, 904–914.

  6. DeHon, R. A.: 1974, ‘Thickness of Mare Material in the Tranquillitatis and Nectaris Basins’,Lunar Science V, The Lunar Sci. Inst. p. 163–164.

  7. Dence, M. R.: 1964,Meteoritics 2, 249–270.

  8. Dence, M. R.: 1965,Ann. N. Y. Acad. Sci. 123, 941–969.

  9. Dence, M. R.: 1968, in B. M. French and N. M. Short (eds.),Shock Metamorphism of Natural Materials, p. 169–183, Mono Book Corp., Baltimore, 644 p.

  10. Dence, M. R.: 1971,J. Geophys. Res. 76, 5552–5565.

  11. Engelhardt, W. von: 1972, ‘Impact structures in Europe’,International Geological Congress, Section 15 (Planetology), Montreal, Canada, p. 90–111.

  12. French, B. M.: 1970,Bull. Volcanol. (2)34, 466–517.

  13. Gault, D. E. and Heitowit, E. D.: 1963,Proc. Sixth Hypervelocity Impact Sympos. 2, 419–526.

  14. Green, J. and Short, N. M.: 1971, ‘Volcanic Landforms and Surface Features’,A Photographic Atlas and Glossary, Springer-Verlag, New York, 519 p.

  15. Hartmann, W. K.: 1964,Comm. Lunar Planetary Lab. 2, no. 36, 175–191.

  16. Hartmann, W. K.: 1972,Icarus 17, 707–713.

  17. Hartmann, W. K. and Kuiper, G. P.: 1962,Comm. Lunar Planetary Lab. 1, 51–66.

  18. Hartmann, W. K. and Wood, C. A.: 1971,The Moon 3, 3–78.

  19. Hartmann, W. K. and Yale, F. G.: 1968,Comm. Lunar Planetary Lab. 7, 131–137.

  20. Hartmann, W. K. and Yale, F. G.: 1969,Sky Telescope 37, 1–4.

  21. Head, J. W.: 1973a, ‘Origin of Morphologic Components of the Hevelius Formation’, Lunar Orientale basin (Abs),Geol. Soc. Am., 1973 Ann. Mtg., p. 661.

  22. Head, J. W.: 1973b,EOS 54, 1126–1127.

  23. Head, J. W.: 1974a, ‘Some Geologic Observations Concerning Lunar Geophysical Models’,Proceedings of the USSR-US Conference on the Cosmochemistry of the Moon and Planets, in press.

  24. Head, J. W.: 1974b, ‘Processes of Lunar Crater Degradation: Changes in Style with Geologic Time’, submitted toIcarus.

  25. Head, J. W.: 1974c,The Moon 9, 355–395.

  26. Head, J. W.: 1974d,The Moon 11, 77.

  27. Kuno, H.: 1969,Am. Geophys. Union, Am. Geophys. Monthly Ser. 13, 495–501.

  28. McCauley, J. F.: 1964a, ‘The Stratigraphy of the Mare Orientale Region of the Moon’, U. S. Geol. Surv. Astrogeologic Studies Ann. Prog. Rept., August 1962-July 1963, Pt. A, p. 86–100.

  29. McCauley, J. F.: 1964b, ‘A Preliminary Report on the Geology of the Hevelius Quadrangle’, U.S. Geol. Surv. Astrogeologic Studies Ann. Prog. Rept., August 1962-July 1963, pt. A, p. 74–85.

  30. McCauley, J. F.: 1967a, ‘Geologic Map of the Hevelius Region of the Moon’, U.S. Geol. Survey Misc. Geol. Inv. Map I-491.

  31. McCauley, J. F.: 1967b, in S. K. Runcorn, (ed.),Mantles of the Earth and Terrestrial Planets, p. 431–460.

  32. McCauley, J. F.: 1968a,Am. Inst. Aeron. Astron. J. 6, 1991–1996.

  33. McCauley, J. F.: 1968b, in R. S. Saunders (ed.),Problems for Geologic Investigations of the Orientale Region of the Moon, and in G.E. Ulrich (ed.),Advanced Systems Traverse Research Project Report, U.S. Geol. Survey Interagency Report: Astrogeology 7, 59 p.

  34. Oriti, R. A. and Green, J.: 1967,Griffith Observer 31, 118–125.

  35. Ridpath, I. and Murray, J.: 1970,J. Brit. Astron. Ass. 80, 115–124.

  36. Ross, C. S. and Smith, R. L.: 1960, ‘Ash-Flow Tuffs: Their Origin, Geologic Relations, and Identification’, U.S. Geol. Surv. Professional Paper, no. 366, 81 p.

  37. Rükl, A.: 1972,Astrophys. Space Sci. Library 33, 22 pp., 6 maps.

  38. Russell, C. T., Coleman, P. J. Jr., Lichtenstein, B. R., Schubert, G., and Sharp, L. R.: 1973,Proc. Fourth Lunar Sci. Conf. 3, 2833–2845.

  39. Saunders, R. S.: 1968, in G. E. Ulrich (ed.),Advanced Systems Traverse Research Project Report U.S. Geol. Surv. Interagency Report: Astrogeology 7, 59 p.

  40. Schaeffer, O. A. and Husain, L.: 1974,Lunar Science V, Lunar Sci. Inst., p. 663–665.

  41. Scott, D. H.: 1974,Geologic Map of the Orientale Region of the Moon, U.S. Geological Survey, (in preparation).

  42. Sheridan, M. F.: 1970,Bull. Geol. Soc. Am. 81, 851–868.

  43. Short, N. M.: 1965,Ann. N. Y. Acad. Sci. 123, 573–616.

  44. Short, N. M.: 1970,Geol. Soc. Am. Bull. 81, 609–648.

  45. Short, N. M. and Forman, M. L.: 1972,Modern Geol. 3, 69.

  46. Sjogren, W. L., Muller, P. M., and Wollenhaupt, W. R.: 1972,Apollo 16 Preliminary Science Report, NASA SP-315, p. 24-1-24-7.

  47. Stuart-Alexander, D. and Howard, K.: 1970,Icarus 12, 440.

  48. Ulrich, G. E.: 1968,Astrogeology 7, 59 p.

  49. Van Dorn, W. G.: 1968,Nature 220, 1102.

  50. Van Dorn, W. G.: 1969,Science 165, 693.

  51. Walker, D., Longhi, J., and Hays, J. F.: 1972,Proc. Third Lunar Sci. Conf. 1, 797–817.

  52. Walker, D., Grove, T. L., Longhi, J., and Hays, J. F.: 1973a,Earth Planetary Sci. Letters 20, 325–336.

  53. Walker, D., Longhi, J., Grove, T. L., Stolper, E., and Hays, J. F.: 1973b,Proc. Fourth Lunar Sci. Conf., 1013–1032.

  54. Warner, J. L., Simonds, C. H., and Phinney, W. C.: 1973,Proc. Fourth Lunar Sci. Conf. 1, 481–504.

  55. Warner, J. L., Simonds, C. H., and Phinney, W. C.: 1974,Lunar Science V, The Lunar Sci. Inst., p. 823–825.

  56. Waters, A. C.: 1955,Geol. Soc. Am. Spec. 62, 703–722.

  57. Waters, A. C.: 1961,Am. J. Sci. 259, 583–611.

  58. Wilhelms, D. E. and McCauley, J. F.: 1971,Geologic Map of the Near Side of the Near Side of the Moon, U.S. Geol. Survey, Misc. Geol. Inv. Map I-703.

  59. Wise, D. V. and Yates, M. T.: 1970,J. Geophys. Res. 75, 261–268.

  60. Wood, C. A.: 1968,Lunar Planetary Lab. Contrib. 120, 157–160.

  61. Wood, C. A.: 1973,Icarus 20, 503–506.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Head, J.W. Orientale multi-ringed basin interior and implications for the petrogenesis of lunar highland samples. The Moon 11, 327–356 (1974).

Download citation


  • Terminal Stage
  • Fault Scarp
  • Crater Floor
  • Petrogenetic Model
  • Basin Interior