Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:

NaCl transport across hen colon

Dependence on electro-chemical driving force

  • 18 Accesses

  • 10 Citations


  1. 1.

    Sheets of isolated mucosa from the colon of chickens on either a high or a low NaCl diet were mounted in Ussing chambers. They were bathed in Krebs-phosphate medium and exposed to sodium concentrations ranging from 3.0 to 140 mmol/l (choline-chloride replacement).

  2. 2.

    In the short-circuited state the net fluxes of sodium in the mucosa (m)-serosa (s) direction, followed saturation kinetics withK m =25 mmol/l in the low-NaCl chickens and 124 mmol/l in the high-NaCl chickens.

  3. 3.

    The unidirectional fluxes of sodium in the s-m direction were linearly related to the electro-chemical driving force. The apparent permeabilities were 8.6±0.3×10−6cm/s in the low-NaCl and 11.6±0.3×10−6cm/s in the high-NaCl birds.

  4. 4.

    The chloride fluxes were in the short-circuited state of equal magnitude in the m-s and the s-m direction, and in the two dietary states. Changes in the electrical driving force resulted in changes in chloride fluxes compatible with passive flow.

This is a preview of subscription content, log in to check access.


  1. Bindslev N (1979) Sodium transport in the hen lower intestine. Induction of sodium sites in the brush border by a low sodium diet. J Physiol (Lond) 288:449–466

  2. Choshniak I, Munck BG, Skadhauge E (1977) Sodium chloride transpor across the chicken coprodeum. Basic characteristics and dependence on sodium chloride intake. J Physiol (Lond) 271:489–504

  3. Frizzell RA, Schultz SG (1972) Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol 59:318–346

  4. Lind J, Munck BG, Olsen O, Skadhauge E (1980) Effects of sugars, amino acids and inhibitors on electrolyte transport across hen colon at different sodium chloride intakes. J Physiol (Lond) 305:315–325

  5. Lyngdorf-Henriksen P, Munck BG, Skadhauge E (1978) Sodium chloride transport across the lower intestine of the chicken Dependence on sodium chloride concentration and effect of inhibitors. Pflügers Arch 378:161–165

  6. Lönnroth I, Munck BG (1980) Effect of chlorpromazine on ion transport induced by cholera toxin, cyclic AMP and cyclic GMP in isolated musosa from hen intestine. Acta Pharmacol Toxicol 47:190–194

  7. Rice GE, Skadhauge E (1982a) The in vivo dissociation of colonic and coprodeal transepithelial transport in NaCl depleted domestic fowl. J Comp Physiol B 146:51–56

  8. Rice GE, Skadhauge E (1982b) Colonic and coprodeal transepithelial transport parameters in NaCl-loaded domestic fowl. J Comp Physiol B 147:65–69

  9. Skadhauge E (1967) In vivo perfusion studies of the water and electrolyte resorption in the cloaca of the fowl (Gallus domesticus). Comp Biochem Physiol 23:483–501

  10. Skadhauge E (1980) Intestinal osmoregulation. In: Epple A, Stetson MH (eds) Avian endocrinology. Academic Press, New York, pp 481–498

  11. Thomas DH, Skadhauge E (1979), Dietary Na+ effects on transepithelial transport of NaCl by hen (Gallus domesticus) lower intestine (colon and coprodeum) perfused luminally in vivo. Pflügers Arch 379:229–236

  12. Ussing HH, Zerahn K (1951) Active transport of sodium as the source of electric current in short-circuited isolated frog skin. Acta Physiol Scand 23:110–127

Download references

Author information

Correspondence to E. Skadhauge.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holtug, K., Skadhauge, E. NaCl transport across hen colon. Pflugers Arch. 394, 222–225 (1982).

Download citation

Key words

  • Intestine
  • NaCl transport
  • Bird osmoregulation