Pflügers Archiv

, Volume 362, Issue 1, pp 85–94 | Cite as

Work-induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion-exchanger microelectrodes

  • P. Hník
  • M. Holas
  • I. Krekule
  • N. Kříž
  • J. Mejsnar
  • V. Smieško
  • E. Ujec
  • F. Vyskočil
Article

Summary

Using liquid ion-exchanger semimicroelectrodes with a side pore, we measured changes of extracellular potassium concentration (Ke+) in adult rabbit and cat gastrocnemius muscles and in venous effluent blood flowing from the cat gastrocnemius muscle during various bouts of activity induced by sciatic nerve stimulation.
  1. 1.

    Isometric tetanic contractions (at 50 Hz) of various durations caused transient accumulation of Ke+ which was non-linearly related to the duration of muscle activity. The peak values of Ke+ in response to muscle stimulation were analogous in rabbits and cats, attaining values, e.g. after a 20-s isometric tetanus, between 8–9 mEq/lK+ in both species.

     
  2. 2.

    Potassium concentration in venous effluent blood (K ven + ) was transiently increased after isometric tetani. Since blood flow was measured at the same time, it was possible to calculate the amount of K+ lost by the muscle after tetani of various durations. A 32 g gastrocnemius muscle of the cat, for example, loses 9.36±1.52 μEqK+ after a 20-s isometric tetanus, which corresponds roughly to 0.5% of the total muscle potassium content. The loss of K+ in this muscle was 29.3 pEq K+/impulse/100 g fresh muscle tissue.

     
  3. 3.

    There was no evident difference between the amount of K+ released during isometric tetani, or tetanic contractions performed under isotonic conditions. Single twitches evoked by indirect stimulation at 1 Hz for several minutes also induced a small rise in K ven + .

     
  4. 4.

    If the loss of K+ from the muscle into the blood stream is transiently prevented by arterio-venous occlusion installed immediately before a 10-s isometric tetanus, most K+ is released subsequently when blood flow is renewed, if the occlusion lasts for 20–25 s. It is not until blood flow is occluded for 40–60 s that most K+ is apparently resorbed and only a minor portion is released and is to be found in the venous blood.

     
  5. 5.

    The transient accumulation of muscle extracellular potassium may locally affect nerve endings, skeletal and smooth muscle cells.

     

Key words

Ion-exchanger microelectrodes Muscle potassium efflux Work-induced changes in muscle Work-induced changes in venous blood Muscle work 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achar, M. V. S.: Effects of injection of Locke's solution with higher concentration of potassium into femoral artery on blood pressure in cats. J. Physiol. (Lond.)198, 115–116P (1968)Google Scholar
  2. 2.
    Altman, P. L., Dittmer, D. S. (eds.): Biology data book, vol. III. Bethesda, Maryland: Federation of American Societies for Experimental Biology 1974Google Scholar
  3. 3.
    Asmussen, E., Nielsen, M.: Experiments on nervous factors controlling respiration and circulation during exercise employing blocking of the blood flow. Acta physiol. scand.60, 103–111 (1964)Google Scholar
  4. 4.
    Barker, D., Ip, M. C., Adal, M. N.: A correlation between the receptor population of the cat's soleus muscle and the afferent fibre-diameter spectrum of the nerve supplying it. In: Symposium on muscle receptors, D. Barker (ed.), pp. 257–261. Hong Kong: Hong-Kong University Press 1962Google Scholar
  5. 5.
    Baylor, D. A., Nicholls, J. G.: Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J. Physiol. (Lond.)203, 555–569 (1969a)Google Scholar
  6. 6.
    Baylor, D. A., Nicholls, J. G.: After-effects of nerve impulses on signalling in the central nervous system of the leech. J. Physiol. (Lond.)203, 571–589 (1969b)Google Scholar
  7. 7.
    Biamino, G., Wessel, H.-J.: Potassium induced relaxation of vascular smooth muscle: A possible mechanism of exercise hyperaemia. Pflügers Arch.343, 95–106 (1973)Google Scholar
  8. 8.
    Brecht, K., Konold, P., Gebert, G.: The effect of potassium, catechnolamines and other vasoactive agents on isolated arterial segments of the muscular type. Physiol. bohemoslov.18, 15–22 (1969)Google Scholar
  9. 9.
    Chapman, J. B.: Potentiating effect of potassium on skeletal muscle twitch. Amer. J. Physiol.217, 898–902 (1969)Google Scholar
  10. 10.
    Chernigovsky, V. N.: Interotseptory (in Russian). Moscow: Medgiz 1960Google Scholar
  11. 11.
    Chernilovskaya, P. E.: Interotseptivnye i notsitseptivnye pressornye refleksy, vyzyvayemye dejstviem khloristogo kaliya na tkani zadney konechnosti. (In Russian, with English summary.) Byull. eksp. Biol. Med.67, 10–14 (1969)Google Scholar
  12. 12.
    Cier, J. F., Lacour, J. R., Cier, A.: Travail musculaire et équilibres ioniques chez le Rat. Path. et Biol.8, 1147–1154 (1960)Google Scholar
  13. 13.
    Fenn, W. O.: Electrolytes in muscle. Physiol. Rev.16, 450–487 (1936)Google Scholar
  14. 14.
    Freygang, W. H., Goldstein, D. A., Hellam, D. C.: The afterpotential that follows trains of impulses in frog muscle fibers. J. gen. Physiol.47, 929–952 (1964)Google Scholar
  15. 15.
    Gebert, G.: Messung der K+- und Na+-Aktivität mit Mikro-Glaselektroden im Extracellulärraum des Kaninchenskeletmuskels bei Muskelarbeit. Pflügers Arch.331, 204–214 (1972)Google Scholar
  16. 16.
    Henderson, E. G.: Potassium exchange and afterpotentials in frog sartorius muscles treated with glycerol. J. gen. Physiol.56, 692–715 (1970)Google Scholar
  17. 17.
    Hilton, S. M., Hudlická, O.: Further studies on the mediation of functional hyperaemia in skeletal muscle. J. Physiol. (Lond.)219, 25–26P (1971)Google Scholar
  18. 18.
    Hilton, S. M., Lywood, D. W.: A photoelectric drop counter. J. Physiol. (Lond.)123, 64P (1954)Google Scholar
  19. 19.
    Hník, P., Hudlická, O., Kučera, J., Payne, R.: Activation of muscle afferents by non-proprioceptive stimuli. Amer. J. Physiol.217, 1451–1457 (1969)Google Scholar
  20. 20.
    Hník, P., Kříž, N., Vyskočil, F., Smieško, V., Mejsnar, J., Ujec, E., Holas, M.: Work-induced potassium changes in muscle venous effluent blood measured by ion-specific electrodes. Pflügers Arch.338, 177–181 (1973)Google Scholar
  21. 21.
    Hník, P., Vyskočil, F., Kříž N., Holas, M.: Work-induced increase of extracellular potassium concentration in muscle measured by ion-specific electrodes. Brain Res.40, 559–562 (1972)Google Scholar
  22. 22.
    Husmark, I., Ottoson, D.: Ionic effects on spindle adaptation. J. Physiol. (Lond.)218, 257–269 (1971)Google Scholar
  23. 23.
    Hutton, R. S., Smith, J. L., Eldred, E.: Postcontraction sensory discharge from muscle and its source. J. Neurophysiol.36, 1090–1103 (1973)Google Scholar
  24. 24.
    Johansson, B.: Circulatory responses to stimulation of somatic afferents. Acta physiol. scand.57, Suppl. 198, 1–91 (1962)Google Scholar
  25. 25.
    Kao, F. F.: An experimental study of the pathways involved in exercise hyperpneoa employing cross-circulation techniques. In: The regulation of human respiration. D. J. C. Cunningham and B. B. Lloyd (eds.), pp. 461–502 Oxford: Blackwell 1963Google Scholar
  26. 26.
    Keynes, R. D., Ritchie, J. M.: The movement of labelled ions in mammalian non-myelinated nerve fibers. J. Physiol. (Lond.)179, 333–367 (1965)Google Scholar
  27. 27.
    Khayutin, V. M.: Refleksy s khemoretseptorov skeletnoy myshtsy. (In Russian, with English summary) Byull. eksp. Biol. Med.25, 11–16 (1953)Google Scholar
  28. 28.
    Kidd, G. L., Kučera, J., Vaillant, C. H.: The influence of the interstitial concentration of K+ on the activity of muscle receptors. Physiol. bohemoslov.20, 95–108 (1971)Google Scholar
  29. 29.
    Kilbrun, K. H.: Muscular origin of elevated plasma potassium during exercise. J. appl. Physiol.21, 675–678 (1966)Google Scholar
  30. 30.
    Kjellmer, I.: The potassium ion as a vasodilator during muscular exercise. Acta physiol. scand.63. 460–468 (1965)Google Scholar
  31. 31.
    Körge, P., Viru, A.: Water and electrolyte metabolism in skeletal muscle of exercising rats. J. appl. Physiol.31, 1–4 (1971)Google Scholar
  32. 32.
    Kříž, N., Syková, E., Ujec, E., Vyklický, L.: Changes of extracellular potassium concentration induced by neuronal activity in the spinal cord of the cat. J. Physiol. (Lond.)238, 1–15 (1974)Google Scholar
  33. 33.
    Laporte, Y., Leitner, L. M., Pagès, B.: Absence d'effects réflexes circulatoires des fibres afférentes du groupe I. C. R. Soc. Biol. (Paris)156, 2130–2133 (1962)Google Scholar
  34. 34.
    Lind, A. R., McNicol, G. W., Donald, K. W.: Circulatory adjustments to sustained (static) muscular activity. In: Proc. of the Beitostölen Symposium on Physical Activity in Health and Disease, K. Evang and K. L. Andersen (eds.), pp. 38–63. Baltimore: Williams and Wilkins Co. 1966Google Scholar
  35. 35.
    Lind, A. R., Taylor, S. H., Humphreys, P. W., Kennelly, B. M., Donald, K. W.: The circulatory effects of sustained voluntary muscle contraction. Clin. Sci.27, 229–244 (1964)Google Scholar
  36. 36.
    Liu, C. T., Huggins, R. A., Hoff, H. E.: Mechanisms of intraarterial K+-induced cardiovascular and respiratory responses. Amer. J. Physiol.217, 969–973 (1969)Google Scholar
  37. 37.
    Mohrman, D. E., Sparks, H. V.: Role of potassium ions in the vascular response to a brief tetanus. Circulat. Res.35, 384–390 (1974)Google Scholar
  38. 38.
    Orkand, R. K., Nicholls, J. G., Kuffler, S. W.: Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol.29, 788–806 (1966)Google Scholar
  39. 39.
    Pérez-González, J. F., Coote, J. H.: Activity of muscle afferents and reflex circulatory responses to exercise. Amer. J. Physiol.223, 138–143 (1972)Google Scholar
  40. 40.
    Prankerd, T. A. J.: The red cell. An account of its chemical physiology and pathology. Oxford: Blackwell 1961Google Scholar
  41. 41.
    Sréter, F. A.: Distribution of water, sodium and potassium in resting and stimulated mammalian muscle. Canad. J. Biochem. Physiol.41, 1035–1045 (1963)Google Scholar
  42. 42.
    Stacey, M. J.: Free nerve endings in skeletal muscle of the cat. J. Anat. (Lond.)105, 231–254 (1969)Google Scholar
  43. 43.
    Tominaga, S., Suzuki, T., Nakamura, T.: Evaluation of roles of potassium, inorganic phosphate, osmolarity, pH,pCO2,pO2, and adenosine or AMP in exercise and reactive hyperemias in canine hindlimb muscles. Tohoku J. exp. Med.109, 347–363 (1973)Google Scholar
  44. 44.
    Ujec, E., Beránek, R.: Differential high-impedance DC amplifier with negative input capacity. Physiol. bohemoslov.16, 89–96 (1967)Google Scholar
  45. 45.
    Vyskočil, F., Kříž, N.: Modifications of single and doublebarrel potassium-specific microelectrodes for various physiological experiments. Pflügers Arch.337, 265–276 (1972)Google Scholar
  46. 46.
    Walker, J. L., Jr.: Ion specific liquid ion exchanger microelectrodes. Anal. Chem.43, 89–92A (1971)Google Scholar
  47. 47.
    Wildenthal, K., Mierzwiak, D. S., Skinner, N. S., Jr., Mitchell, J. H.: Potassium-induced cardiovascular and ventilatory reflexes from the dog hindlimb. Amer. J. Physiol.215, 542–548 (1968)Google Scholar
  48. 48.
    Zelená, J., Hník, P.: Motor and receptor units in the soleus muscle after nerve regeneration in very young rats. Physiol. bohemoslov.12, 277–290 (1963)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • P. Hník
    • 1
  • M. Holas
    • 1
  • I. Krekule
    • 1
  • N. Kříž
    • 1
  • J. Mejsnar
    • 2
  • V. Smieško
    • 3
  • E. Ujec
    • 1
  • F. Vyskočil
    • 1
  1. 1.Institute of PhysiologyCzechoslovak Academy of SciencesPrague 4, KrčCzechoslovakia
  2. 2.Department of ZoologyCharles UniversityPragueCzechoslovakia
  3. 3.Institute of Normal and Pathological PhysiologySlovak Academy of SciencesBratislavaCzechoslovakia

Personalised recommendations