Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Studies on the ascending pathways from the thermosensitive region of the spinal cord

  • 27 Accesses

  • 54 Citations


In young guinea pigs the ascending pathways from the spinal thermosensitive region were studied by means of 1. microelectrode recording and 2. micro-electrocoagulation. In the first series of studies, impulse frequency was recorded from single units of the spinothalamic tract which responded to a temperature rise in the spinal segments C5-T2 with an increase of discharge frequency. At a spinal cord temperature of 38–39° C these units showed a firing rate of 1–5 imp./sec; local heating of the spinal cord (dT/dt=0.1° C/sec) to 40–41° C caused an increase in discharge frequency to 20–25 imp./sec. The mean static impulse frequency was 3 imp./sec at a spinal cord temperature of 39° C, and 10 imp./sec at a spinal cord temperature of 42.5° C.

In the second series of studies bilateral RF-coagulations were carried out in different sites of the diencephalon. These experiments showed that the ascending fibres from the spinal thermosensitive region connect the thermosensitive spinal region with a hypothalamic “temperature control centre”.

This is a preview of subscription content, log in to check access.


  1. 1.

    Benzinger, Th.: The thermal homeostasis of man. Symp. Soc. exp. Biol.18, 49–80 (1964).

  2. 2.

    Bligh, J.: The thermosensitivity of the hypothalamus and thermoregulation in mammals. Biol. Rev.41, 317–367 (1966).

  3. 3.

    Brück, K., Wünnenberg, B.: Über die Modi der Thermogenese beim neugeborenen Warmblüter. Untersuchungen am Meerschweinchen. Pflügers Arch. ges. Physiol.282, 362–375 (1965).

  4. 4.

    —, Wünnenberg, W.: Beziehung zwischen Thermogenese im “braunen” Fettgewebe, Temperatur im cervicalen Anteil des Vertebralkanals und Kältezittern. Pflügers Arch. ges. Physiol.290, 167–183 (1966).

  5. 5.

    ——: Die Steuerung des Kältezitterns beim Meerschweinchen. Pflügers Arch. ges. Physiol.293, 215–225 (1967).

  6. 6.

    Brück, K., Wünnenberg, W.: Meshed control of two effector systems: non-shivering and shivering thermogenesis. In: Physiological and behavioral temperature regulation. Eds. J. D. Hardy, A. P. Gagge, and J. A. J. Stolwijk. Springfield, Ill.: Ch. C. Thomas (in the press).

  7. 7.

    Hammel, H. T., Jackson, D. C., Stolwijk, J. A. J., Hardy, J. D., Stroemme, S. B.: Temperature regulation by hypothalamic proportional control with an adjustable set point. J. appl. Physiol.18, 1146–1154 (1963).

  8. 8.

    Hardy, J. D., Hellon, R. F., Sutherland, K.: Temperature-sensitive neurons in the dog's hypothalamus. J. Physiol. (Lond.)175, 242–253 (1964).

  9. 9.

    Hemingway, A., Rasmussen, Th., Wikoff, H., Rassmussen, A. T.: Effects of heating hypothalamus of dogs by diathermy. J. Neurophysiol.3, 329–338 (1940).

  10. 10.

    Jessen, C.: Auslösung von Hecheln durch isolierte Wärmung des Rückenmarkes am wachen Hund. Pflügers Arch. ges. Physiol.297, 53–70 (1967).

  11. 11.

    —, Simon, E., Kullmann, R.: Interaction of spinal and hypothalamic thermodetectors in body temperature regulation of the conscious dog. Experientia (Basel)24, 694–695 (1968).

  12. 12.

    Kosaka, M., Simon, E., Thauer, R., Walther, O. E.: Effect of thermal stimulation of spinal cord on respiratory and cortical activity. Amer. J. Physiol.217, 858–864 (1969).

  13. 13.

    ——, Walther, O.-E., Thauer, R.: Response of respiration to selective heating of the spinal cord below partial transsection. Experientia (Basel)25, 36–37 (1969).

  14. 14.

    Nakayama, T., Hammel, H. T., Hardy, J. D., Eisenman, J. S.: Thermal stimulation of electrical activity of single units of the preoptic region. Amer. J. Physiol.204, 1122–1126 (1963).

  15. 15.

    Rautenberg, W., Simon, E.: Die Beeinflussung des Kältezitterns durch lokale Temperaturänderung im Wirbelkanal. Pflügers Arch. ges. Physiol.281, 332 to 345 (1964).

  16. 16.

    Simon, E., Rautenberg, W., Jessen, C.: Initiation of shivering in unanaesthetized dogs by local cooling within the vertebral canal. Experientia (Basel)21, 476–477 (1965).

  17. 17.

    ——, Thauer, R., Iriki, M.: Auslösung thermoregulatorischer Reaktionen durch lokale Kühlung im Vertebralkanal. Naturwissenschaften50, 337 (1963).

  18. 18.

    Smith, R. E., Roberts, J. C.: Thermogenesis of brown adipose tissue in cold-acclimated rats. Amer. J. Physiol.206, 143–148 (1964).

  19. 19.

    Tindal, J. S.: The forebrain of the guinea pig in stereotaxic coordinates. J. comp. Neurol.124, 259–266 (1965).

  20. 20.

    Wünnenberg, W.: Verlauf und Funktion ascendierender Fasern aus einer thermosensitiven Region (C5-T2) des Meerschweinchens. Pflügers Arch.312, R 118 (1969).

  21. 21.

    Wünnenberg, W., Brück, K.: Thermoreceptive structures in the cervical spinal cord of the guinea pig. In: Proc. Int. Union Physiol. Sc. VII, 475 (1968).

  22. 22.

    ——: Zur Funktionsweise thermoreceptiver Strukturen im Cervicalmark des Meerschweinchens. Pflügers Arch. ges. Physiol.299, 1–10 (1968).

  23. 23.

    ——: Single unit activity evoked by thermal stimulation of the cervical spinal cord in the guinea-pig. Nature (Lond.)218, 1268–1268 (1968).

Download references

Author information

Additional information

Supported by the Deutsche Forschungsgemeinschaft (Br. 184/10).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wünnenberg, W., Brück, K. Studies on the ascending pathways from the thermosensitive region of the spinal cord. Pflugers Arch. 321, 233–241 (1970). https://doi.org/10.1007/BF00588444

Download citation


  • Temperature Regulation
  • Control of Shivering
  • Central Thermosensitive Structures
  • Spinal Cord
  • Diencephalon


  • Temperaturregulation
  • Steuerung des Kältezitterns
  • zentrale thermosensitive Strukturen
  • Rückenmark
  • Zwischenhirn