Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The basic requirements for the function of the isolated cell free perfused rat kidney

Summary

We have attempt to define experimental conditions which would overcome or minimize some of the well known functional limitations of isolated single pass kidney preparations. Rat kidneys were perfused with a Krebs-Henseleit solution containing the gelatine derivative Haemaccel as colloid. Perfusion was initiated in situ via the mesenteric artery. Arterial flow rate was measured continously from the very onset of perfusion. Effective perfusion pressure was recorded distal to the perfusion capillary in the aorta. Aliquots of the venous effluate and of an arterial bypass solution were drawn through an O2 electrode for the calculation of\(Q_{{\text{O}}_{\text{2}} } \).

First it was shown that the often observed initial vasoconstriction of the preparation which occurs immediately after cannulation of the kidney can be eliminated by rapid disconnection of the autonomic nerve supply. A more delayed gradual increase of renal resistance, which we observed after 30 min could be prevented by using sterile perfusion solutions. Using glucose as the only substrate fuel, fractional Na-reabsorption decreased to 65% 3 hrs after the onset of perfusion (T Na=27.3 μEq/g·min). When a substrate enriched sterile solution was used containing pyruvate, lactate, oxaloacetate, and glutamate, Na conservation of the isolated kidney could be maintained at a higher level. Fractional Na-reabsorption levelled off and was still 88% after 3 hrs (T Na=64.4 μEq/g·min). The results demonstrate that the transport function of the isolated kidney preparation critically depends on the supply with substrate hydrogen.

Thus, the present system meets the basic reqirements necessary for further micropuncture evaluation of renal function under the condition of isolated single pass perfusion.

This is a preview of subscription content, log in to check access.

Abbreviations

ASP:

aspartate

GFR:

glomerular filtration rate

GLU:

glutamate

aKG:

α-ketoglutarate (α-oxoglutarate)

LAC:

lactate

MAL:

malate

NAD:

nicotinamide adenine dinucleotide

NADH:

hydrogenated from of NAD

OAA:

oxaloacetic acid, oxaloacetate

PYR:

pyruvate

\(Q_{{\text{O}}_{\text{2}} } \) :

oxygen consumption (μM/g·min)

References

  1. 1.

    Bahlmann, J., Giebisch, G., Ochwadt, B., Schoeppe, W.: Micropuncture study of isolated perfused rat kidney. Amer. J. Physiol.212, 77 (1967)

  2. 2.

    Bainbridge, F. A., Evans, C. L.: The heart, lung, kidney preparation. J. Physiol. (Lond.)48, 278 (1914)

  3. 3.

    Bauman, A. W., Clarkson, Th. W., Miles, E. M.: Functional evaluation of isolated perfused rat kidney. J. appl. Physiol.18, 1239 (1963)

  4. 4.

    Bergmeyer, H. U.: Methoden der enzymatischen Analyse, Bd. II, 2. Aufl., S. 1163. Weinheim/Bergstraße: Verlag Chemie 1970

  5. 5.

    Berkowitz, H. D., Miller, L. D., Itzkovitz, H. D.: Renal function and the renin-angiotensin system in the isolated perfused kidney. Amer. J. Physiol.213, 928 (1967).

  6. 6.

    Borst, P.: In: Funktionelle und morphologische Organisation der Zelle, p. 137, P., Karlson, ed. Berlin-Göttingen-Heidelberg: Springer 1963

  7. 7.

    Bowman, R. H.: Gluconeogenesis in the isolated perfused rat kidney. J. biol. Chem.245, 1604 (1970)

  8. 8.

    Bowman, R. H., Maack, Th.: Functional studies of the isolated perfused rat kidney with particular attention to glucose transport. IV. International Congress of Nephrology, Abstract 1, p. 398, Stockholm 1969

  9. 9.

    Bücher, Th., Klingenberg, M.: Wege des Wasserstoffs in der lebendigen Organisation. Angew. Chem.70, 552 (1958)

  10. 10.

    Cuypers, Y., Nizet, A., Baerten, A.: Technique pour la perfusion de reins isoles de chien avec du sang heparine. Arch. int. Physiol. Biochem.72, 245 (1964)

  11. 11.

    Dume, Th., Koch, K. M., Krause, H. H., Ochwadt, B.: Kritischer venöser Sauerstoffdruck an der erythrocytenfrei perfundierten isolierten Rattenniere. Pflügers Arch. ges. Physiol.290, 89 (1966)

  12. 12.

    Franke, H., Huland, H., Weiss, Ch., Unsicker, K.: Improved net sodium transport of the isolated rat kidney. Z. ges. exp. Med.156, 268 (1971)

  13. 13.

    Führ, J., Kaczmarczyk, J., Krüttgen, C. D.: Eine einfache Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin. Wschr.33, 729 (1955)

  14. 14.

    Guder, W.: Metabolism of isolated kidney tubules. Hoppe-Seylers Z. physiol. Chem.352, 1319 (1971)

  15. 15.

    Haslam, J. M., Krebs, H. A.: The permeability of mitochondria to oxaloacetate and malate. Biochem. J.107, 659 (1968)

  16. 16.

    Hofbauer, K. G., Zschiedrich, H., Rauh, W., Orth, H., Hackenthal, E., Gross, F.: Evidence for release and conversion of angiotensin I in the isolated rat kidney. 5. Intern. Congress Nephrology, Abstracts 647, Mexico 1972

  17. 17.

    Hohorst, H. J., Kreutz, F. H., Bücher, Th.: Über Metabolitgehalte und Metabolitkonzentrationen in der Leber der Ratte. Biochem. Z.332, 18 (1959)

  18. 18.

    Huland, H., Seitz, H. J., Tarnowsky, W., Weiss, Ch.: Substrate utilisation by rat kidney. 5. International Congress of Nephrology, Abstracts 891, Mexico 1972

  19. 18.a.

    Jirgensons, B.: Effect of detergents on the confirmation of proteins: I. An abnormal increase of the optimal rotation dispersion constant. Arch. Biochem.94, 59 (1961)

  20. 19.

    Krahe, P., Orth, H., Mischke, U., Gross, F.: Renin release and renin substrate reaction in the isolated rabbit kidney. Kidney Internat.2, 6 (1972)

  21. 20.

    Krebs, H. A., Bennett, D. A. H., de Gasquet, P., Gascoyne, T., Yoshida, T.: Renal gluconeogenesis. The effect of diet on the gluconeogenetic capacity of rat kidney-cortex slices. Biochem. J.86, 22 (1963)

  22. 21.

    Krebs, H. A., Gascoyne, T., Notton, B. M.: Generation of extramitochandrial reducing power in gluconeogenesis. Biochem. J.102, 275 (1967)

  23. 22.

    Kupfer, S., Thompson, D. D., Pitts, R. F.: The isolated kidney and its response to diuretic agents. Amer. J. Physiol.167, 703 (1951)

  24. 23.

    Leichtweiss, H. P., Lübbers, D. W., Weiss, Ch., Baumgärtl, H., Peschke, W.: The oxygen supply of the rat kidney. Measurements of intrarenal\(P_{{\text{O}}_{\text{2}} } \). Pflügers Arch309, 328 (1969)

  25. 24.

    Leichtweiss, H. P., Schröder, H., Weiss, Ch.: Die Beziehung zwischen Perfusionsdruck und Perfusionsstromstärke an der mit Paraffinöl perfundierten Rattenniere. Pflügers Arch. ges. Physiol.293, 303 (1967)

  26. 25.

    Maude, D. L.: Effects of substrates and inhibitors of the tricarboxylic acid cycle on proximal tubular fluid transport in vitro. Biochim. biophys. Acta (Amst.)215, 216 (1970)

  27. 26.

    Michael, U. F., Barenberg, R. L., Chavez, R., Vaamonde, C. A., Papper, S.: Renal handling of sodium and water in the hypothyroid rat. Clearance and micropuncture studies. J. clin. Invest.51, 1405 (1972)

  28. 27.

    Nishiitsutsuji-Uwo, J. M., Ross, B. D., Krebs, H. A.: Metabolic activities of the isolated perfused rat kidney. Biochem. J.103, 852 (1967)

  29. 28.

    Nizet, A., Cuypers, Y., Deetjen, P., Kramer, K.: Functional capacity of the isolated perfused dog kidney. Pflügers Arch. ges. Physiol.296, 179 (1967)

  30. 29.

    Rosenfeld, S., Kraus, R., McCullan, A.: Effect of renin, ischemia, and plasma protein loading on the isolated perfused kidney. Amer. J. Physiol.209, 835 (1965)

  31. 30.

    Rosenfeld, S., Sellers, A. L., Katz, J.: Development of an isolated perfused mammalian kidney. Amer. J. Physiol.196, 1155 (1959)

  32. 31.

    Ross, B. D., Leaf, A., Epstein, F. H.: Evidence in the perfused kidney for Na-reabsorption not mediated by NaKATPase. 5. Internat. Congress Nephrology, Abstracts 772, Mexico 1972

  33. 32.

    Sacktor, B., Dick, A. R.: Oxidation of extramitochondrial diphosphopyridine nucleotide by various tissues of the mouse. Science145, 606 (1964)

  34. 33.

    Schröder, H.: Der hydrostatische Druck im proximalen Tubulus der isolierten, zellfrei perfundierten Rattenniere und seine Beziehung zur Perfusionsstromstärke. Dissertation, Hamburg 1968

  35. 34.

    Schröder, E., Ochwadt, B., Bethge, H.: Herstellung und Funktion eines isolierten Nierenpräparates vom Hund. Pflügers Arch. ges. Physiol.280, 189 (1965)

  36. 35.

    Schurek, H. J., Brecht, J. P., Brandt, P.: Na-Reabsorption und O2-Verbrauch der isoliert perfundierten Rattenniere unter Einwirkung von Ethacrynsäure. 8. Sympos. Ges. Nephrologie, R., Heintz, ed. Aachen 1971

  37. 36.

    Schurek, H. J., Brecht, J. P., Brandt, P., Lange, K., Kolbe, H., Keller, K.: Substrate action on transport and metabolism of the isolated perfused rat kidney. (Action of pyruvate, oxaloacetate, butyrate and succinate). In: Sympos. Biochem. aspects of kidney function. Salzburg: 1971. Hohenegger, M., ed. München: Goldmann 1972

  38. 37.

    Schurek, H. J., Lohfert, H., Hierholzer, K.: N-Reabsorption in the isolated perfused rat kidney (Dependency on substrates and Na-load). Pflügers Arch.319, 1285 (1970)

  39. 38.

    Seely, J. F., Boulpaep, E. L.: Renal function studies on the isobaric autoperfused dog kidney. Amer. J. Physiol.221, 1075 (1971)

  40. 39.

    Shannon, J. A., Winton, F. R.: The renal excretion of inulin and creatinine by the anesthetized dog and the pumplung-kidney preparation. J. Physiol. (Lond.)98, 97 (1940)

  41. 40.

    Steinhausen, M.: Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Rattenin vivo und ihre Anwendung zur Bestimmung tubulärer Strömungsgeschwindigkeiten. Pflügers Arch. ges. Physiol.277, 22 (1963)

  42. 41.

    Verney, E. B., Starling, E. H.: On secretion by the isolated kidney. J. Physiol. (Lond.)56, 353 (1922)

  43. 42.

    Waugh, W. H., Kubo, T.: Development of an isolated perfused dog kidney with improved function. Amer. J. Physiol.217, 277 (1969)

  44. 43.

    Weiss, Ch.: Erfahrungen über den Einfluß von Plasmaersatzpräparaten auf die Nierenfunktion. In: Plasmaersatzpräparate auf Gelatinebasis, Sympos., Ham-1968, K., Horatz, Hrsg Stuttgart: Thieme 1968

  45. 44.

    Weiss, Ch., Passow, H., Rothstein, A.: Autoregulation of flow in isolated rat kidney in the absence of red cells. Amer. J. Physiol.196, 1115 (1959)

  46. 45.

    Williamson, J. R., Anderson, J., Browning, E. T.: Inhibition of gluconeogenesis by butylmalonate in perfused rat liver. J. biol. Chem.245, 1717 (1970)

  47. 46.

    Randall, H. M., Jr., Cohen, J. J.: Anaerobic CO2 production by dog kidney in vitro. Amer. J. Physiol.211, 493 (1966)

  48. 47.

    In the meantime the results of Drs. Rosset al. cited as reference number 31 has been published in Amer. J. Physiol.: Ross. B. D., Epstein, F. H., Leaf, A.: Sodium reabsorption in the perfused rat kidney. Amer. J. Physiol.225, 1165 (1973)

Download references

Author information

Additional information

Supported by the interdisciplinary work group “Berlin Transplant”.

Supported bythe Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schurek, H.J., Brecht, J.P., Lohfert, H. et al. The basic requirements for the function of the isolated cell free perfused rat kidney. Pflugers Arch. 354, 349–365 (1975). https://doi.org/10.1007/BF00587852

Download citation

Key words

  • Isolated Rat Kidney
  • Electrolyte Transport
  • Substrate Dependeney
  • Gas Metabolism