Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of acceleration on distribution of lung perfusion and on respiratory gas exchange

Summary

Application of new technical and methodological development as respiratory mass spectrometry and double nuclide perfusion scintigraphy results in more detailed knowledge of the effect of accelerational forces on lung perfusion and respiratory gas exchange.

For evaluation of some details of lung perfusion and respiratory gas exchange 20 healthy male subjects were exposed to prolonged hypergravitational stress (2 min,+G z,+G x or−G y). Distribution of lung perfusion was measured by means of double nuclide perfusion scintigraphy using99mTechnetium- and131Iodinemicrospheres allowing the registration of 2 phases of pulmonary perfusion in the same subject.PAO2 andPACO2 were measured by continuous mass spectrometrical registration andPaO2,PaCO2 and pHa were determined from arterial blood samples polarographically and electrometrically, respectively. Measurements were performed in the pre-run, in the run and partly in the post-run period, too.

Depending on the magnitude and direction of the gravitational vector blood volume shifts within the lungs. Using computer evaluation of the scintiscans, it is possible to determine the magnitude of the normal-, hypo- and hyperperfused lung regions: for the extreme case of −4G y only 3% of the 47% left lung perfusion at rest persists.

During+G z-acceleration thePaO2 decreases linearily for approximately 10 Torr/+1G z,PAO2 increases by about 5 to 7 Torr/+1G z andAaDO2 increases correspondingly from 10.4 Torr at rest to 60.1 Torr at+3G z. ForPaCO2 no significant change could be observed during acceleration up to+3G z, whereasPACO2 decreased significantly from 36.5 to 25.0 Torr in the same time;aADCO2 increased correspondingly. No significant pHa change was observed during all +G z runs up to+3G z.

Prolonged expiration during+G z-acceleration reveals an amplification of the amplitude of the cardiogenic oscillations in the alveolar plateau of expiratoryPO2 andPCO2-curves. Furthermore the alveolar plateau slopes down depending on the gravitational stress and indicating large disturbances of the ventilation/perfusion ratio.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Babushkin, V. I., Isakov, P. K., Malkin, V. B., Usachov, V. V.: Respiration and gaseous exchange in man subjected to radial acceleration. Sechenov physiol. J. U.S.S.R.44, 308 (1958)

  2. 2.

    Banchero, N., Cronin, L., Rutishauser, W. J., Tsakiris, A. G., Wood, E. H.: Effects of transverse acceleration on blood oxygen saturation. J. appl. Physiol.22, 731 (1967)

  3. 3.

    Barr, P.-O.: Hypoxemia in man induced by prolonged acceleration. Acta physiol. scand.54, 128 (1962).

  4. 4.

    Barr, P.-O.: Pulmonary gas exchange in man as affected by prolonged gravitational stress. Acta physiol. scand.58, (Suppl. 207), 1–46 (1963)

  5. 5.

    Barr, P.-O., Bjurstedt, H., Coleridge, J. C. G.: Blood gas changes in the anesthitized dog during prolonged exposure to positive radial acceleration. Acta physiol. scand.47, 16 (1959)

  6. 6.

    Bryan, A. C., Bentivoglio, L. G., Beerel, F., MacLeish, H., Zidulka, A., Bates D. V.: Factors affecting regional distribution od ventilation and perfusion in the lung. J. appl. Physiol.19, 395 (1964)

  7. 7.

    Bryan, A. C., MacNamara, W. D., Simpson, J., Wagner, H. N.: Effect of acceleration on the distribution of pulmonary blood flow. J. appl. Physiol.20, 1129 (1965)

  8. 8.

    Cherniack, N. S., Hyde, A. S., Zechman, F. W.: Effect of transverse acceleration on pulmonary function. J. appl. Physiol.14, 914 (1959)

  9. 9.

    Clarke, S. W., Jones, J. G., Glaister, D. H.: Changes in pulmonary ventilation in different postures. Clin. Sci.37, 357 (1969)

  10. 10.

    Dowell, A. R., Shropshire, S., Jr., McCally, M.: Ventilation and pulmonary gas exchange during headward (+Gz) gradient acceleration. Aerospace Med.38, 926 (1968)

  11. 11.

    Ernst, H., Herxheimer, H., Koppenhagen, K., Nieding, G. v.: Investigation of lung perfusion by simultaneous use of scintigraphy and aminophylline. J. Physiol. (Lond.)206, 23P (1969)

  12. 12.

    Gauer, O. H.: Die Atemmechanik unter Beschleunigung. Luftfahrtmed.2, 291 (1938)

  13. 13.

    Gauer, O. H.: Röntgenkinematographische Darstellung der Fliehkraftwirkung. Luftfahrtmed.9, 109 (1944)

  14. 14.

    Gauer, O. H., Henry, J. P.: Negative (−Gz) acceleration in relation to arterial oxygen saturation, subendocardial hemorrhage and venous pressure in the fore head. Aerospace Med.35, 533 (1964)

  15. 15.

    Glaister, D. H.: The effect of positive centrifugal acceleration upon the distribution of ventilation and perfusion within the human lung, and its relation to pulmonary arterial and intraoesophageal pressures. Proc. roy. Soc. B168, 311 (1967)

  16. 16.

    Glaister, D. H.: Pulmonary gas exchange during positive acceleration. Rep. No. 1212, Flying Personell Research Committee, M.O.D. (Air Force Dept.), London, 1963, cited from AGARDograph 133, publ. by Technivision Services Slough, England, Nov. 1970

  17. 17.

    Henry, J. P.: Studies of the physiology of negative acceleration. A.F. Tech. Rept. 5953, 59 pp. USAF, Wright-Patterson AFB, Ohio, Oct. 1950

  18. 18.

    Henry, J. P., Gauer, O. H., Kety, S. S., Kramer, K.: Factors maintaining cerebral circulation during gravitational stress. J. clin. Invest.30, 292 (1950).

  19. 19.

    Jacquemin, C., Demange, J., Timbal, J., Varène, P.: Effects of forward acceleration on anatomical dead space. J. appl. Physiol.20, 1205 (1965)

  20. 20.

    Kaneko, K., Milic-Emili, J., Dolovich, M. B., Dawson, A., Bates, D. V.: Regional distribution of ventilation and perfusion as a function of body position. J. appl. Physiol.21, 767 (1966)

  21. 21.

    Krekeler, H., Nieding, G. von, Liese, W., Muysers, K.: Sauerstoffpartialdruck im arteriellen Blut und im Capillarblut des hyperämisierten Ohrläppchens in Norm-, Hyper- und Hypoxie. Pneumonologie146, 34 (1971)

  22. 22.

    Marshall, H. W., Lindberg, E. F., Sutterer, W. F.: Cardiac output, circulatory pressures and arterial oxygen saturation during forward acceleration. Fed. Proc.20, 131 (1961)

  23. 23.

    Muysers, K., Delgmann, L., Smidt, U.: Wasserdampfunabhängige Probeneinlaßsysteme für Respirationsmassenspektrometer. Pflügers Arch. ges. Physiol.299, 185 (1968)

  24. 24.

    Muysers, K., Smidt, U.: Atemgasanalysen. In: C. W. Hertz: Colloquin über Begutachtung von Lugenfunktionsstörungen in Malente/Holst, April 1968. Stuttgart: G. Thieme 1968

  25. 25.

    Newhouse, M. T., Becklake, M. R., Macklem, P. T., McGregor, M.: Effect of alterations in end-tidal CO2 tension on flow resistance. J. appl. Physiol.19, 745 (1964)

  26. 26.

    Nieding, G. von, Krekeler, H., Smidt, U., Muysers, K., Koppenhagen, K.: Water vapour independent inlet system for a respiratory mass spectrometer and its application to experiments with a human centrifuge. Int. J. Biomed. Engng. (1973) (in press)

  27. 27.

    Nisell, O.: The action of oxygen and carbon dioxide on the bronchioles and vessels of the isolated and perfused lungs. Acta physiol. scand.21 (Suppl. 73), 1–62 (1950)

  28. 28.

    Nolan, A. C., Marshall, H. W., Cronin, L., Sutterer, W. F., Wood, E. H.: Decreases in arterial oxygen saturation and associated changes in pressures and roentgenographic appearance of the thorax during forward (+G x ) acceleration. Aerospace Med.34, 797 (1963)

  29. 29.

    Riley, R. L., Permutt, S., Said, S., Godfrey, M., Cheng, T. O., Howell, J. B. L., Shepard, R. H.: Effect of posture on pulmonary dead space in man. J. appl. Physiol.14, 339 (1959)

  30. 30.

    Rosenhamer, G.: Influence of increased gravitational stress on the adaptation of cardiovascular and pulmonary function to exereise. Acta physiol. scand.68 (Suppl. 276), 1–61 (1967)

  31. 31.

    Siehoff, F., Muysers, F., Worth, G.: Les gradients d'O2 et de CO2 de fin d'expiration chez les mineurs au repos, au cours d'un exercise musculaire et pendant la phase de récupération. Poumon10, 9 (1963)

  32. 32.

    Swenson, E. W., Finley, T. N., Guzman, S. V.: Unilateral hypoventilation in man during temporary occlusion of one pulmonary artery. J. clin. Invest.40, 828 (1961)

  33. 33.

    Ulmer, W. T., Reichel, G.: Untersuchungen zum alveolär/arteriellen Kohlensäuredruckgradienten. In „Physiologie und Pathologie des Gasaustausches in der Lunge”, Bad Oeynhausener Gespräche IV, Oktober 1960. Berlin-Göttingen-Heidelberg: Springer 1961

  34. 34.

    Wagner, P. D., West, J. B.: Effects of diffusion impairment on O2 and CO2 time courses in pulmonary capillaries. J. appl. Physiol.33, 62 (1972)

  35. 35.

    West, J. B., Dollery, C. T.: Distribution of blood flow and ventilation-perfusion ratio in the lung, measured with radioactive CO2. J. appl. Physiol.15, 405 (1960)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von Nieding, G., Krekeler, H., Koppenhagen, K. et al. Effect of acceleration on distribution of lung perfusion and on respiratory gas exchange. Pflugers Arch. 342, 159–176 (1973). https://doi.org/10.1007/BF00587846

Download citation

Key words

  • Hypergravitational Stress
  • Lung Perfusion
  • Gas Exchange
  • Double Nuclide Perfusion Scintigraphy
  • Respiratory Gas Exchange