Comparison of nacre with other ceramic composites
Papers
Received:
Accepted:
- 495 Downloads
- 87 Citations
Abstract
Mother-of-pearl, the highly filled ceramic composite of mollusc shell, is compared with other, less highly filled, artificial ceramics. Stiffness is fairly simply related to volume fraction of ceramic, but no model seems to be adequate to describe this relationship. Strength, stress-intensity factor and the work of fracture are also dependent on the ceramic content but in a much more complex manner. Nacre has the highest value for all these parameters.
Keywords
Polymer Ceramic Composite Complex Manner Mollusc Shell Ceramic Content
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.J. D. Currey,Proc. Roy. Soc. Lond. B 196 (1977) 443.Google Scholar
- 2.A. P. Jackson, J. F. V. Vincent, D. Briggs, R. A. Crick, S. F. Davies, M. J. Hearn andR. M. Turner,J. Mater. Sci. Lett. 5 (1987) 975.Google Scholar
- 3.
- 4.
- 5.J. D. Birchall,Phil. Trans. Roy. Soc. Lond. A 310 (1983) 31.Google Scholar
- 6.N. McN. Alford, J. D. Birchall, A. J. Howard andK. Kendall, in Proceedings of the 1st Conference in Materials Engineering, University of Leeds (1984) p. 73.Google Scholar
- 7.Occlusin brochure, ICI Dental, ICI Pharmaceuticals, Macclesfield.Google Scholar
- 8.ICI, Asterite brochure.Google Scholar
- 9.du Pont, Corian brochure.Google Scholar
- 10.A. C. Kitchener, PhD thesis, University of Reading (1985).Google Scholar
- 11.J. D. Currey,J. Biomech. 12 (1979) 313.Google Scholar
- 12.J. E. Gordon, “Structures, or why things don't fall down” (Penguin, Harmondsworth, 1979).Google Scholar
- 13.D. Hull, “An Introduction to Composite Materials” (The University Press, Cambridge, 1981).Google Scholar
- 14.A. G. Atkins andY.-W. Mai, “Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials” (Ellis-Horwood, Chichester, 1985).Google Scholar
- 15.R. F. S. Hearmon,Rev. Mod. Phys. 18 (1946) 409.Google Scholar
- 16.J. J. Gilman,J. Appl. Phys. 31 (1960) 2208.Google Scholar
- 17.J. D. Currey,Phil. Trans. Roy. Soc. B 304 (1984) 509.Google Scholar
- 18.Idem, J. Biomech. 21 (1988) 131.Google Scholar
- 19.
- 20.
- 21.A. K. Abell, M. A. Crenshaw andD. T. Turner, in “Biomedical and Dental Applications of Polymers”, edited by F. K. Koblitz (University Press, Oxford, 1981) p. 347.Google Scholar
- 22.K. Piekarski,Int. J. Engng Sci. 11 (1973) 557.Google Scholar
- 23.T. J. Hirsch,Proc. Amer. Concr. Inst. 59 (1962) 427.Google Scholar
- 24.M. Braem, V. E. Van Doren, P. Lambrechts andG. Vanherle,J. Mater. Sci. 22 (1987) 2037.Google Scholar
- 25.
- 26.J. L. Katz,J. Mater. Sci. Lett. 7 (1988) 131.Google Scholar
- 27.
- 28.V. R. Riley,J. Comp. Mater. 2 (1968) 436.Google Scholar
- 29.
Copyright information
© Chapman and Hall Ltd 1990