Molecular and General Genetics MGG

, Volume 233, Issue 1–2, pp 260–268

Comparative sequence analysis of theClostridium difficile toxins A and B

  • Christoph von Eichel-Streiber
  • Rita Laufenberg-Feldmann
  • Sabine Sartingen
  • Jörg Schulze
  • Markus Sauerborn
Article

Summary

The six clones pTB112, pTB324, pTBs12, pCd122, pCd14 and pCdl3 cover thetox locus ofClostridium difficile VPI 10463. This region of 19 kb of chromosomal DNA contains four open reading frames including the completetoxB andtoxA genes. The two toxins show 63% amino acid (aa) homology, a relatedness that had been predicted by the cross-reactivity of some monoclonal antibodies (mAb) but that is in contrast to the toxin specificity of polyclonal antisera. A special feature of ToxA and ToxB is their repetitive C-termini. We define herein 19 individual CROPS (combinedrepetitiveoligopeptides of 20–50 as length) in the ToxB C-terminus, which are separable into five homologous groups. Comparison of the as sequences of the N-terminal two-thirds of ToxA and ToxB revealed three marked structures, a cluster of 172 hydrophobic, highly conserved as in the centre of both toxins, a sequence of 120 residues with an accumulation of highly conserved arginine, cysteine, histidine, methionine, and tryptophan residues, and a stretch of 248 less conserved aa. The probable function of these domains is discussed. Structural and functional homologies of ToxA and ToxB indicate that both genes have a common ancestor and may have evolved by gene duplication, with subsequent recombination and mutation, as has been reported for streptococcal glucosyltransferases (Gtf).

Key words

tox locus ToxA-ToxB comparison C-terminal repeats Structural dualism Streptococcal glucosyltransferases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banas J, Russell RRB, Ferretti JJ (1990) Sequence analysis of the gene for the glucan-binding protein ofStreptococcus mutans Ingbritt. Infect Immun 58:667–673Google Scholar
  2. Banno Y, Kobayashi T, Kono K (1984) Biochemical characterization and biological actions of two toxins (D-1 and D-2) fromClostridium difficile. Rev Infect Dis 6:11–20Google Scholar
  3. Barroso LA, Wang SZ, Phelps CJ, Johnson JL, Wilkins TD (1990) Nucleotide sequence of theClostridium difficile toxin B gene. Nucleic Acids Res 18:4004Google Scholar
  4. Bartlett JG, Chang TW, Gurwith M, Gorbach SL, Onderdonk AB (1978) Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med 298:531–534Google Scholar
  5. Binz T, Kurazono H, Wille M, Frevert J, Wernars K, Niemann H (1990) The complete sequence of botulinum neurotoxin A and comparison with other clostridial neurotoxins. J Biol Chem 265:9153–9158Google Scholar
  6. Bisseret F, Keith G, Rihn B, Amiri I, Werneburg B, Girardot R, Baldacini O, Green G, Nguyen K, Monteil H (1989)Clostridium difficile toxin B: characterization and sequence of three peptides. J Chromatogr Biomed Appl 490:91–100Google Scholar
  7. Däubener W, Leiser E, Eichel-Schreiber C v, Hadding U (1988)Clostridium difficile toxins A and B inhibit human immune response in vitro. Infect Immun 56:1107–1112Google Scholar
  8. Dailey DC, Schloemer R (1988) Identification and characterization ofClostridium difficile promoter element that is functional inE. coli. Gene 70:343–350Google Scholar
  9. DiLella AG, Woo SLC (1987) Hybridization of genomic DNA to oligonucleotide probes in the presence of tetramethylammonium chloride, Methods Enzymol 152:447–451Google Scholar
  10. Dove CH, Wang SZ, Price SB, Phelbs CJ, Lyerly DM, Wilkins TD, Johnson JL (1990) Molecular characterization of theClostridium difficile toxin A gene. Infect Immun 58:480–488Google Scholar
  11. Eichel-Streiber C v, Sauerborn M (1990)Clostridium difficile toxin A carries a C-terminal repetitive structure homologous to the carbohydrate binding region of streptococcal glucosyltransferases. Gene 96:107–113Google Scholar
  12. Eichel-Streiber C v, Harperath U, Bosse U, Hadding U (1987) Purification of two high molecular weight toxins ofClostridium difficile which are antigenically related. Microbial Pathogen 2:307–318Google Scholar
  13. Eichel-Streiber C v, Suckau D, Wachter M, Hadding U (1989) Cloning and characterization of overlapping DNA fragments of the toxin A gene ofClostridium difficile. J Gen Microbiol 135:55–64Google Scholar
  14. Eichel-Streiber C v, Laufenberg-Feldmann R, Sartingen S, Schulze J, Sauerborn M (1990) Cloning ofClostridium difficile toxin B gene and demonstration of high N-terminal homology between toxin A and toxin B. Med Microbiol Immunol 179:271–279Google Scholar
  15. Ferretti JJ, Glipin ML, Russell RRB (1987) Nucleotide sequence of a glucosyltransferase gene fromStreptococcus sobrinus MFe28. J Bacteriol 169:4271–4278Google Scholar
  16. Garcia P, Garcia JL, Garcia E, Sanchez-Pulles JM, Lopez R (1990) Modular organization of the lytic enzymes ofStreptococcus pneumoniae and its bacteriophages. Gene 86:81–88Google Scholar
  17. Johnson JL, Phelps C, Barroso L, Roberts MD, Lyerly DM, Wilkins TD (1990) Cloning and expression of the toxin B gene ofClostridium difficile. Curr Microbiol 20:397–401Google Scholar
  18. Lyerly DM, Saum KE, MacDonald DK, Wilkins TD (1985) Effects ofClostridium difficile toxins given intragastrically to animals. Infect Immun 47:349–352Google Scholar
  19. Lyerly DM, Phelps CJ, Toth J, Wilkins TD (1986) Characterization of toxins A and B ofClostridium difficile with monoclonal antibodies. Infect Immun 54:70–76Google Scholar
  20. Meador III J, Tweten RK (1988) Purification and characterization of toxin B fromClostridium difficile. Infect Immun 56:1708–1714Google Scholar
  21. Niemann H, Andersen Beckh B, Binz T, Eisel U, Demotz S, Mayer T, Widman C (1988) Tetanus toxin: Evaluation of the primary sequence and potential applications. Zentralbl Bakteriol Suppl 17:29–38Google Scholar
  22. Phelps JC, Lyerly LD, Johnson JL, Wilkins TD (1991) Construction and expression of the completeClostridium difficile toxin A gene inEscherichia coli. Infect Immun 59:150–153Google Scholar
  23. Pothoulakis C, Barone LM, Ely R, Faris B, Clark ME, Franzblau C, LaMont JT (1986) Purification and properties ofClostridium difficile cytotoxin B. J Biol Chem 261:1316–1321Google Scholar
  24. Rihn B, Scheftel JM, Girardot R, Monteil H (1984) A new purification procedure forClostridium difficile enterotoxin. Biochem Biophys Res Commun 124:690–695Google Scholar
  25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. Cold Spring Habor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  26. Sauerborn M, Eichel-Streiber C v (1990) Nucleotide sequence ofClostridium difficile toxin A. Nucleic Acids Res 18:1629–1630Google Scholar
  27. Schulze J, Eichel-Streiber C v (1990) Cloning and characterization of theClostridium difficile toxin B gene. Zentral Bakteriol Mikrobiol Hyg [A] 273:126Google Scholar
  28. Sullivan NM, Pellett S, Wilkins TD (1982) Purification and characterization of toxin A and B ofClostridium difficile. Infect Immun 35:1032–1040Google Scholar
  29. Tabor S, Richardson CC (1987) DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA 84:4767–4771Google Scholar
  30. Taylor NS, Thorne GM, Bartlett JG (1981) Comparison of two toxins produced byClostridium difficile. Infect Immun 34:1036–1043Google Scholar
  31. Tinoco Jr I, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, Crothers DM, Gralla J (1973) Improved estimation of secondary structure in ribonucleic acid. Nature New Biol 246:40–41Google Scholar
  32. Tucker KD, Wilkins TD (1991) Toxin A ofClostridium difficile binds to the human carbohydrate antigens 1, X, and Y. Infect Immun 59:73–78Google Scholar
  33. Tucker KD, Carrig PE, Wilkins TD (1990) Toxin A ofClostridium difficile is a potent cytotoxin. J Clin Microbiol 28:869–871Google Scholar
  34. Ueda S, Shiroza T, Kuramitsu HK (1988) Sequence analysis of thegtfC gene fromStreptococcus mutans GS-5. Gene 69:101–109Google Scholar
  35. Young M, Minton NP, Staudenbauer WL (1989) Recent advances in the genetics of Clostridia. FEMS Microbiol Rev 63:301–326Google Scholar

Copyright information

© Springer-Verlag 1992 1992

Authors and Affiliations

  • Christoph von Eichel-Streiber
    • 1
  • Rita Laufenberg-Feldmann
    • 1
  • Sabine Sartingen
    • 1
  • Jörg Schulze
    • 1
  • Markus Sauerborn
    • 1
  1. 1.Institut für Medizinische MikrobiologieJohannes-Gutenberg-UniversitätMainzFRG

Personalised recommendations