Advertisement

Molecular and General Genetics MGG

, Volume 233, Issue 1–2, pp 89–96 | Cite as

Glucose transport in the yeastKluyveromyces lactis

I. Properties of an inducible low-affinity glucose transporter gene
  • Micheline Wésolowski-Louvel
  • Paola Goffrini
  • Iliana Ferrero
  • Hiroshi Fukuhara
Article

Summary

In most strains ofKluyveromyces lactis, respiratory function is not required for growth on glucose. However, some natural variant strains are unable to grow when respiration is blocked by specific inhibitors (Rag henotype). This phenotype is due to an allelic variation of the chromosomal geneRAG1. The sensitive variants have a recessive allelerag1. TheRAG1 gene has been cloned by complementation of arag1 strain from a genomic bank derived from a Rag+ strain. The nucleotide sequence of the cloned gene indicated that theRAG1 product was a sugar transporter protein. The amino acid sequence deduced from the gene structure contained the 12 hydrophobic segments typical of a transmembrane protein, and showed a high degree of homology with theGAL2 (galactose permease) andHXT2 (a high-affinity glucose transporter) proteins ofSaccharomyces cerevisiae. In arag1 null mutant, as in the naturalrag1 variant, uptake of glucose at high external glucose concentrations was impaired. TheRAG1 protein appears to correspond to a low-affinity glucose transporter. Transcription of theRAG1 gene, which was undetectable when cells were grown in glycerol, was induced by glucose. It is concluded that respiration-dependent growth on glucose of the Rag variant strains is due to a defect in this inducible glucose transport system.

Key words

Kluyveromyces lactis Glucose transporter Induction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcorn ME, Griffin CC (1978) A kinetic analysis of D-xylose transport inRhodotorula glutinis. Biochim Biophys Acta 510:361–371Google Scholar
  2. Bianchi MM, Falcone C, Chen XJ, Wésolowski-Louvel M, Frontali L, Fukuhara H (1987) Transformation ofKluyveromyces lactis by new vectors derived from a 1.6 μm circular plasmid of yeast. Curr Genet 12:185–192Google Scholar
  3. Bisson LF, Fraenkel DG (1983a) Involvement of kinases in glucose and fructose uptake bySaccharomyces cerevisiae. Proc Natl Acad Sci USA 80:1730–1734Google Scholar
  4. Bisson LF, Fraenkel DG (1983b) Transport of 6-deoxyglucose inSaccharomyces cerevisiae. J Bacteriol 155:995–1000Google Scholar
  5. Bucher T, Redetzki H (1951) Eine spezifische photometrische Bestimmung von Äthylalkohol auf fermentativem Wege. Klin Wochenschr 29:615Google Scholar
  6. Carlson M, Botstein D (1982) Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28: 145–154Google Scholar
  7. Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J (1983) β-galactosidase gene fusions for analyzing gene expression inEscherichia coli and yeast. Methods Enzymol 100:293–308Google Scholar
  8. Celenza JL, Marshall-Carlson L, Carlson M (1988) The yeastSNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc Natl Acad Sci USA 85:2130–2134Google Scholar
  9. Chang YD, Dickson RC (1988) Primary structure of the lactose permease gene from the yeastKluyveromyces lactis. Presence of an unusual transcript structure. J Biol Chem 263:16696–16703Google Scholar
  10. Chen XJ (1987). Etude du plasmide pKD1 et développement de systèmes d'expression de gènes chez la levureKluyveromyces lactis. Phd Thesis Université de Paris-SudGoogle Scholar
  11. Chen XJ, Fukuhara H (1988) A gene fusion system using the 3′ aminoglycoside phosphotransferase gene of the kanamycin resistance transposon Tn903: use in the yeastKluyveromyces lactis andSaccharomyces cerevisiae. Gene 69:181–192Google Scholar
  12. Chen XJ, Wésolowski-Louvel M, Fukuhara H (1992) Glucose transport in the yeastKluyveromyces lactis. II. Transcriptional regulation of the glucose transporter geneRAG1. Mol Gen GenetGoogle Scholar
  13. Does AL, Bisson LF (1989) Comparison of glucose uptake kinetics in different yeasts. J Bacteriol 171:1303–1308Google Scholar
  14. Douglas HC, Hawthorne D (1964) Enzymatic expression and genetic linkage of genes controlling galactose utilization inSaccharomyces cerevisiae. Genetics 49:837–844Google Scholar
  15. Gasnier B (1987) Characterization of low- and high-affinity glucose transports in the yeastKluyveromyces marxianus. Biochim Biophys Acta 903:425–433Google Scholar
  16. Goffrini P, Algeri AA, Donnini C, Wésolowski-Louvel M, Ferrero I (1989)RAG1 andRAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for the growth on sugars. Yeast 5:99–106Google Scholar
  17. Goffrini P, Wésolowski-Louvel M, Ferrero I, Fukuhara H (1990)RAG1 gene of the yeastKluyveromyces lactis codes for a sugar transporter. Nucleic Acids Res 18:5294Google Scholar
  18. Goffrini P, Wésolowski-Louvel M, Ferrero I (1991) A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeastKluyveromyces lactis. Mol Gen Genet 228:401–409Google Scholar
  19. Kruckeberg AL, Bisson LF (1990) TheHXT2 gene ofSaccharomyces cerevisiae is required for high-affinity glucose transport. Mol Cell Biol 10:5903–5913Google Scholar
  20. Lagunas R, De Juan C, Benito B (1986) Inhibition of biosynthesis ofSaccharomyces cerevisiae sugar transport system by tunicamycin. J Bacteriol 168:1484–1486Google Scholar
  21. Landschulz WH, Johnson PF, McKnight SL (1981) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764Google Scholar
  22. Lang JM, Cirillo VP (1987) Glucose transport in a kinaselessSaccharomyces cerevisiae mutant. J Bacteriol 169:2932–2937Google Scholar
  23. Mueckler MC, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HIT (1985) Sequence and structure of a human glucose transporter. Science 229:941–945Google Scholar
  24. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  25. Nehlin JO, Carlberg M, Ronne H (1989) Yeast galactose permease is related to yeast and mammalian glucose transporters. Gene 85:313–319Google Scholar
  26. Neigeborn L, Carlson M (1984) Genes affecting the regulation ofSUC2 gene expression by glucose repression inSaccharomyces cerevisiae. Genetics 108:845–858Google Scholar
  27. Neigeborn L, Schwartzberg P, Reid R, Carlson M (1986) Null mutations in theSNF3 gene ofSaccharomyces cerevisiae cause a different phenotype than do previously isolated missense mutations. Mol Cell Biol 6:3569–3574Google Scholar
  28. Postma E, van den Broek PJA (1990) Continuous-culture study of the regulation of glucose and fructose transport inKluyveromyces marxianus CBS 6556. J Bacteriol 172:2871–2876Google Scholar
  29. Riley MI, Sreekrishna K, Bhairi S, Dickson RC (1987) Isolation and characterization of mutants ofKluyveromyces lactis defective in lactose transport. Mol Gen Genet 208:145–151Google Scholar
  30. Royt PW, MacQuillan AM (1976) Evidence for an inducible glucose transport system inKluyveromyces lactis. Biochim Biophys Acta 426:302–316Google Scholar
  31. Schneider RP, Wiley WR (1971) Kinetic characteristics of the two glucose transport systems inNeurospora crassa. J Bacteriol 106:487–492Google Scholar
  32. Sherman F, Fink G, Hicks JB (1983) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  33. Spencer-Martin I, van Uden N (1985) Inactivation of active glucose transport inCandida wickerhamii is triggered by exocellular glucose. FEMS Microbiol Lett 28:277–279Google Scholar
  34. Szkutnicka K, Tschopp JF, Andreuw L, Cirillo VP (1989) Sequence and structure of the yeast galactose transporter. J Bacteriol 171:4486–4493Google Scholar
  35. Tschopp JF, Emr SD, Field C, Schekman R (1986)GAL2 codes for a membrane-bound subunit of the galactose permease inSaccharomyces cerevisiae. J Bacteriol 166:313–318Google Scholar
  36. Wésolowski M, Algeri A, Goffrini P, Fukuhara H (1982) Killer DNA plasmids of the yeastKluyveromyces lactis. I. Mutations affecting the killer phenotype. Curr Genet 150:137–140Google Scholar
  37. Wésolowski-Louvel M, Tanguy-Rougeau C, Fukuhara H (1988a) A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast. Yeast 4:71–81Google Scholar
  38. Wésolowski-Louvel M, Goffrini P, Ferrero I (1988b) TheRAG2 gene of the yeastKluyveromyces lactis codes for a putative phosphoglucose isomerase. Nucleic Acids Res 16:8714Google Scholar
  39. White MK, Weber MJ (1989) Leucine zipper motif update. Nature 340:103–104Google Scholar
  40. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–118Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Micheline Wésolowski-Louvel
    • 1
  • Paola Goffrini
    • 2
  • Iliana Ferrero
    • 2
  • Hiroshi Fukuhara
    • 1
  1. 1.Institut Curie, Section de BiologieCentre UniversitaireOrsay CédexFrance
  2. 2.Institute of GeneticsUniversity of ParmaParmaItaly

Personalised recommendations