Pflügers Archiv

, Volume 332, Issue 3, pp 206–217 | Cite as

The force-frequency relationship: A comparative study between warm- and cold-blooded animals

  • E. Rumberger
  • H. Reichel


In a comparative study, the mechanical and electrical responses of the guinea pig's papillary muscles and strips of the turtle's and frog's ventricles to various stimulation patterns were investigated. Typical forcefrequency relationships were found to be present in all preparations. It is, however, much more pronounced in the guinea pig's heart than in the other preparations. Striking differences exist between the warm-blooded and the cold-blooded animals, as far as “pure frequency potentiation” is concerned, i.e., the frequency dependence of the maximal actively developed force after a certain resting period (test-interval) following a series of conditioning rhythmical stimuli. Whereas in the guinea pig's papillary muscle the amplitude of optimal test contraction increases with the frequency of foregoing stimuli, the amplitude is depressed in the cold-blooded preparations by a rise of frequency. This effect is found to be due to the shortening of the action potential. Thus the mechanical response of cold-blooded preparations seems to depend primarily on the duration of depolarization under different conditions of stimulation. In the guinea pig's papillary muscle, the same changes in the time course of depolarization can be observed, but their effect on the contractile force cannot be revealed in such experiments. A much more predominant role in the force development of a papillary muscle may be attributed to the immediate influence of frequency on the contractile mechanism, i.e. to the pure frequency potentiation which does not exist in the myocardium of cold-blooded animals. These differences may be explained by the different development of Ca++ stores of the sarcoplasmic reticulum in heart muscle of cold- and warm-blooded animals.

Key words

Comparative Physiology of Heart Muscle Force-Frequency Relationship Pure Frequency Potentiation Electro-Mechanical Coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoni, H., Jacob, R., Kaufmann, R.: Mechanische Reaktionen des Frosch- und Säugetiermyokards bei Veränderung der Aktionspotential-Dauer durch konstante Gleichstromimpulse. Pflügers Arch.306, 33–57 (1969).Google Scholar
  2. —, Rotmann, M.: Zum Mechanismus der negativ inotropen Acetylcholin-Wirkung auf das isolierte Froschmyokard. Pflügers Arch. ges. Physiol.300, 67–68 (1968).Google Scholar
  3. Bleichert, A., Reichel, H.: Die Hemmung der Erschlaffung beim Herzmuskel des Kalt- und Warmblüters. Pflügers Arch. ges. Physiol.276, 242–249 (1962).Google Scholar
  4. Carsten, M. E.: Cardiac sarcotubular vesicles: effects of ions, ouabain and acetylstrophantidin. Circulat. Res.20, 599–605 (1967).Google Scholar
  5. Edmands, R. E., Greenspan, K., Fisch, Ch.: Electrophysiological correlates of contractile change in mammalian and amphibian myocardium. Cardiovasc. Res.3, 252–260 (1968).Google Scholar
  6. Hasselbach, W., Makinose, M.: Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem. Z.333, 518–528 (1961).Google Scholar
  7. Heintzen, P., Kraft, H. G., Wiegmann, O.: Über die elektrische und mechanische Tätigkeit des Herzstreifenpräparats vom Frosch in Abhängigkeit von der Temperatur. Z. Biol.108, 401–411 (1956).Google Scholar
  8. Kavaler, F.: Membrane depolarization as a cause of tension development in mammalian ventricular muscle. Amer. J. Physiol.197, 968–970 (1959).Google Scholar
  9. Kedem, J., Mahler, Y., Rogel, S.: The effect of heart rate on myocardial contractility during single and paired pulse stimulation “in vivo”. Arch. int. Physiol. Biochem.77, 880–892 (1969).Google Scholar
  10. Koch-Weser, J., Blinks, J. R.: The influence of the interval between beats on myocardial contractility. Pharmacol. Rev.15, 601–652 (1963).Google Scholar
  11. Kruta, V., Braveny, P.: Restitution de la contractilité du myocarde entre les contractions et phénomènes de potentiation. Arch. int. Physiol.69, 645–667 (1961).Google Scholar
  12. ——: Rate of restitution and self-regulation of contractility in mammalian heart muscle. Nature (Lond.)197, 905–906 (1963).Google Scholar
  13. Niedergerke, R.: The staircase-phenomen and the action of calcium on the heart. J. Physiol. (Lond.)134, 569–583 (1956).Google Scholar
  14. Palmer, R. F., Posey, V. A.: Ion effects on calcium accumulation by cardiac sarcoplasmic reticulum. J. gen. Physiol.50, 2085–2095 (1967).Google Scholar
  15. Reichel, H., Bleichert, A.: Excitation—contraction coupling in heart muscle. Nature (Lond.)183, 826–827 (1959).Google Scholar
  16. Reiter, M., Stickel, F. J.: Der Einfluß der Kontraktionsfrequenz auf das Aktionspotential des Meerschweinchen-Papillarmuskels. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.260, 342–365 (1968).Google Scholar
  17. Rogel, S., Mahler, Y.: Consumption and cumulation of the inotropic effect of depolarization. Israel J. med. Sci.6, 90–102 (1970).Google Scholar
  18. Rumberger, E.: Über Korrelationen zwischen der Aktionspotentialdauer und dem zeitlichen Verlauf der Erschlaffung beim Herzmuskel des Warm- und Kaltblüters. Pflügers Arch. ges. Physiol.301, 70–75 (1968).Google Scholar
  19. —: Der Zeitverlauf der Kontraktionsfähigkeit des Herzmuskels nach plötzlichen Entdehnungen während der isometrischen Kontraktion in Abhängigkeit von der Reizfrequenz. Pflügers Arch.318, 353–365 (1970).Google Scholar
  20. —, Retzlaff, E., Reichel, H.: Beitrag zur Frequenz-Potenzierung des Papillarmuskels vom Meerschweinchenherzen. Pflügers Arch.316, R8 (1970).Google Scholar
  21. Sano, T., Suzuki, F., Sato, S.: Mechanism of inotropic action of catecholamines and ouabain in cardiac muscle in relation to changes of action potential. Jap. Heart J.11, 269–290 (1970).Google Scholar
  22. Schaefer, J., Reichel, H., Schwarzkopf, H. J., Rumberger, E., Nordmann, K. J., Sedlmeyer, I., Bleichert, A.: Untersuchungen zur Kraft-Frequenz-Beziehung des menschlichen Herzens. Verh. dtsch. Ges. Kreisl.-Forsch.37, 356–359 (1971).Google Scholar
  23. Simpson, F. O., Dertelis, S. J.: The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system. J. Cell Biol.12, 91–100 (1962).Google Scholar
  24. Sommer, J. R., Johnson, E. A.: Cardiac muscle. A comparative ultrastructural study with special reference to frog and chicken hearts. Z. Zellforsch.98, 437–468 (1969).Google Scholar
  25. Sopis, J. A., Langer, G. A.: Calcium kinetics in frog heart. J. molec. Cell. Card.1, 291–305 (1970).Google Scholar
  26. Staley, N. A., Benson, E. S.: The ultrastructure of frog ventricular cardiac muscle and its relationship to mechanisms of excitation-contraction coupling. J. Cell Biol.38, 99–114 (1968).Google Scholar
  27. Wiegmann, O., Kraft, H. G., Küper, J.: Der Einfluß der Schlagfrequenz auf Aktionspotentiale und Mechanogramme des Herzstreifens in verschiedenen Temperaturbereichen. Z. Biol.109, 270–280 (1957).Google Scholar
  28. Wood, E. H., Heppner, R. L., Weidmann, S.: Inotropic effects of electric currents. Circulat. Res.24, 409–445 (1969).Google Scholar
  29. Woodworth, R. S.: Maximal contraction “staircase” contraction refractory period and compensatory pause on the heart. Amer. J. Physiol.8, 213–249 (1902).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • E. Rumberger
    • 1
  • H. Reichel
    • 1
  1. 1.Physiologisches Institut der Universität HamburgHamburgGermany

Personalised recommendations