Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evolution de la pression partielle d'oxygène et du pH sanguins chez l'embryon de Poulet au cours de la croissance

Evolution of bloodPO2 and pH in the chicken embryo during growth

  • 29 Accesses

  • 6 Citations


A vascular micro-catheterism technique allowed the study of blood\(P_{{\text{O}}_{\text{2}} } \) and pH evolution during chicken embryonic life (from eight days to hatching) and in the chicken one to three days of age.

pHa and\(p{\text{H}}\bar v\) evolve in a diphasic way:

  • — they show a progressive acidification until the 15th day of incubation\(p{\text{H}}\bar v\) = −0.041x + 7.956;x=days of incubation);

  • — from that time they remain at constant values.

\(Pa_{{\text{O}}_{\text{2}} } \) and\(P\bar v_{{\text{O}}_{\text{2}} } \) as well as the difference\(Pa_{{\text{O}}_{\text{2}} } - P\bar v_{{\text{O}}_{\text{2}} } \) decrease significantly as a function of ageing in the embryo (\(Pa_{{\text{O}}_{\text{2}} } \) torr=−3.54x+99.5;\(P\bar v_{{\text{O}}_{\text{2}} } \) torr = −2.05x+52.0.

During the post-natal period the pH values become alcaline and the\(P_{{\text{O}}_{\text{2}} } \) values increase suddenly.

The interpretation of the simultaneous decrease in pH and\(P_{{\text{O}}_{\text{2}} } \) is discussed and the hypothesis of a progressive asphyxia (hypercapnic acidosis and hypoxia) is advanced. The asphyxic situation could be the consequence of the chorioallantoic involution of the circulation.


Une technique de micro-cathétérisation vasculaire a permis d'étudier l'évolution de la\(P_{{\text{O}}_{\text{2}} } \) et du pH sanguins au cours de la vie embryonnaire du Poulet (de 8 jours à l'éclosion) et chez le poussin de 1 à 3 jours.

Le pHa et le\(P\bar v_{{\text{O}}_{\text{2}} } \) évoluent de manière diphasique:

  • — ils montrent une acidification progressive jusqu'à 15 jours d'incubation\(P\bar v_{{\text{O}}_{\text{2}} } \) = −0,041x + 7,956;x = nombre de jours d'incubation);

  • — à partir de ce stade ils conservent sensiblement les mêmes valeurs.

Les\(Pa_{{\text{O}}_{\text{2}} } \) et\(P\bar v_{{\text{O}}_{\text{2}} } \) ainsi que la différence\(Pa_{{\text{O}}_{\text{2}} } - P\bar v_{{\text{O}}_{\text{2}} } \) décroissent significativement chez l'embryon en fonction de l'âge (\(Pa_{{\text{O}}_{\text{2}} } \) torr=−3,54x+99,5;\(P\bar v_{{\text{O}}_{\text{2}} } \) torr = − 2,05x + 52,0).

A la période post-natale, le pH s'alcalinise et les\(P_{{\text{O}}_{\text{2}} } \) augmentent brutalement.

L'interprétation de la baisse simultanée de pH et de\(P_{{\text{O}}_{\text{2}} } \) est discutée, et l'hypothèse d'une asphyxie (acidose hypercapnique associée à une hypoxie) progressive semble pouvoir être avancée. L'état asphyxique est peut-être déterminé par l'involution de la circulation chorio-allantoïdienne.

This is a preview of subscription content, log in to check access.


  1. Abramovici, A.: L'évolution du pH du plasma et des liquides extra-embryonnaires de l'embryon de Poulet au cours du développement normal. C.R. Acad. Sci. (Paris)265, 336–339 (1967).

  2. Abramovici, A.: Evolution des constantes physico-chimiques des liquides extra-embryonnaires et du plasma de l'embryon de Poulet pendant le développement normal et tératogène. 2ème Thèse Doctorat ès-Sciences. Fac. Sc., Orsay 1967.

  3. Assali, N. S.: Fetal life in utero and the changes at birth. Harper Hosp. Bull.24, 105–108 (1966).

  4. Barić, J., Barić, O.: Oxygen consumption of chicken during the last days of incubation and the first three days after hatching (en Roumain). Arkiv. Biol. Nauka16, 61–73 (1964).

  5. Bartels, H.: Prenatal respiration; ch. 2: Respiration of bird foetuses. Frontiers of Biology,17. Amsterdam: North Holl. Publ. Co. 1970.

  6. —, Hiller, G., Reinhardt, W.: Oxygen affinity of chicken blood before and after hatching. Resp. Physiol.1, 345–356 (1966).

  7. Beattie, J.: The oxygen uptake and carbon dioxide output of late chick embryos. Brit. Poult. Sci.5, 269–276 (1964a).

  8. —: The glycogen content of skeletal muscle, liver and heart in late chick embryos. Brit. Poult. Sci.5, 285–293 (1964b).

  9. Boyer, C. C.: Respiration of embryonic blood. Proc. Soc. exp. Biol. (N.Y.)75, 211–214 (1950).

  10. Dawes, C., Simkiss, K.: The acid-base status of the blood of the developing chick embryo. J. exp. Biol.50, 79–86 (1969).

  11. Erasmus, B. de W., Howell, B. J., Rahn, H.: Ontogeny of acid base balance in the bullfrog and chicken. Resp. Physiol.11, 46–53 (1970/71).

  12. Fischer, W. M., Vogel, H. R., Thews, G.: O2 and CO2 exchange in the human placenta. In: Oxygen transport in blood and tissue, pp. 56–59. edit. by D. W. Lübbers, U. C. Luft, G. Thews and F. Witzleb. Stuttgart: G. Thieme 1968.

  13. Gaudebout, C., Clavier, F., Blayo, M. C.: Mesure polarographique in vitro de la pression partielle d'oxygène (P O 2) dans les liquides biologiques sans hémoglobine. Importance de l'agitation de l'échantillon. Bull. Physiol. Path. Resp.5, 91–105 (1969).

  14. Grabowski, C. T.: Lactic acid accumulation as a cause of hypoxia-induced malformations in the chick embryo. Science134, 1359–1360 (1961).

  15. —: Physiological changes in the blood stream of chick embryos exposed to teratogenic doses of hypoxia. Develop. Biol.13, 199–213 (1966).

  16. Hall, F. G.: Haemoglobin function in the developing chick. J. Physiol. (Lond.)83, 222–228 (1934).

  17. Johnson, E. P., Bell, W. B.: The blood pH of leukotic fowls and the filterability of the leukosis agent. J. infect. Dis.58, 342–348 (1936).

  18. Lillie, F. R.: Lillie's development of the chick, revised by H. L. Hamilton, 3rd ed. New York: Holt, Rinehart and Winston 1952.

  19. Metcalfe, J., Bartels, H., Moll, W.: Gas exchange in the pregnant uterus. Physiol. Rev.47, 782–838 (1967).

  20. Novy, M. J., Parer, J. T.: Absence of high blood oxygen affinity in the foetal cat. Resp. Physiol.6, 144–150 (1969).

  21. O'Connor, R. J.: Respiration and cell division in the red blood cells of the chicken embryo. Brit. J. exp. Path.32, 336–340 (1951).

  22. —: Growth and differenciation in the red blood cells of the chicken embryo. J. Anat. (Lond.)86, 320–325 (1952).

  23. Ramsay, W. N. M.: Iron metabolism and haemoglobin formation in the embryonated hen egg. Biochem. J.49, 444–449 (1951).

  24. Rol'nik, V. V., Portenko, E. L.: Echanges gazeux de l'embryon de poulet durant la croissance (en Russe). J. Obsch. Biol.25, 133–140 (1964).

  25. Romanoff, A. L.: The avian embryo. Macmillan 1960.

  26. Romanoff, A. L.: Biochemistry of the avian embryo. John Wiley 1967.

  27. Romijn, C., Roos, J.: The air space of the hen's egg and its change during the period of incubation. J. Physiol. (Lond.)94, 365–379 (1938).

  28. Rychter, Z., Kopecký, M., Lemež, L.: The blood of chick embryo. IV. On the circulation blood volume from the 2nd day of incubation (25 somites stage), till hatching (en Tchèque, résumé anglais). Čs. Morfol.3, 11–25 (1955).

  29. Wangensteen, O. D., Rahn, H.: Respiratory gas exchange by the avian embryo. Resp. Physiol.11, 31–45 (1970/71).

  30. —, Wilson, D., Rahn, H.: Diffusive permeability of egg shell to gases. Physiologist12, 385 (1969).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Girard, H., Muffat-Joly, M. Evolution de la pression partielle d'oxygène et du pH sanguins chez l'embryon de Poulet au cours de la croissance. Pflugers Arch. 328, 21–35 (1971). https://doi.org/10.1007/BF00587358

Download citation


  • Oxygen Partial Pressure
  • pH
  • Blood
  • Chicken
  • Embryo


  • Sauerstoffdruck
  • pH
  • Blut
  • Hühnchen
  • Embryo