Pflügers Archiv

, Volume 361, Issue 3, pp 241–250 | Cite as

The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles

  • Margaret D. Brown
  • Mary A. Cotter
  • Olga Hudlická
  • Gerta Vrbová


When rabbit fast muscles were chronically stimulated at a frequency naturally occurring in nerves to slow muscles (10 Hz), there was a transformation towards a slow muscle type such as an increase of capillary density, increased activity of the oxidative enzyme, succinic dehydrogenase, and a decrease of muscle fibre diameters. After 28 days the intensity and distribution of SDH and the capillary density were similar to those of soleus.

The increases in capillary density preceded the changes in activity of SDH; there was a significantly greater capillary/muscle fibre ratio and number of capillaries/mm2 in muscles stimulated for only 4 days at which time no change could be detected in SDH. These changes were induced by slow frequency stimulation only, and not by an overall increase of activity.

Stimulation of fast muscles for 4 days at a higher frequency naturally occurring in the nerves to fast muscles (short bursts of tetani), with the same total number of stimuli as that used in slow frequency stimulation did not produce any changes in capillary density, activity of SDH or contraction times. No changes were observed in either fast or slow muscles stimulated with short bursts of tetani (and lower total number of impulses) up to 28 days.

Activation of fast muscles at 5 Hz continuously or 10 Hz intermittently also caused an increase in capillary density.

It is therefore concluded that only low frequency activation of fast muscles brings about a transformation of the muscle fibres towards a slow type and that the first noticeable change is an increase in the capillary density.

Key words

Capillary density Slow and fast muscles Chronic stimulation Fibre diameters Succinic dehydrogenase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E. D., Bronk, D. W.: The discharge of impulses in motor nerve fibres. J. Physiol. (Lond.)67, 119–151 (1929)Google Scholar
  2. Baldwin, K. M., Klinkerfuss, G. H., Terjung, R. J., Mole, P. A., Holloszy, J. O.: Respiratory capacity of white, red and intermediate muscle: adaptive response to exercise. Amer. J. Physiol.222, 373–378 (1972)Google Scholar
  3. Barnard, R. J., Edgerton, V. R., Peter, J. B.: Effects of exercise on skeletal muscle. I. Biochemical and histological properties. J. appl. Physiol.28, 762–766 (1970)Google Scholar
  4. Barnard, R. J., Edgerton, V. R., Peter, J. B.: Effect of exercise on skeletal muscle. II. Contractile properties. J. appl. Physiol.28, 767–770 (1970)Google Scholar
  5. Buller, A. J., Eccles, J. C., Eccles, R. M.: Differentiation of fast and slow muscles in the cat hind limb. J. Physiol. (Lond.)150 399–416 (1960)Google Scholar
  6. Cotter, M., Hudlická, O., Vrbová, G.: Growth of capillaries during long-term activity in skeletal muscle. Bibl. anat. (Basel)11, 395–398 (1973)Google Scholar
  7. Denny-Brown, D. E.: On the nature of postural reflexes. Proc. Roy. Soc. B104, 252–301 (1929)Google Scholar
  8. Eccles, J. C., Eccles, R. M., Lundberg, A.: The action potentials of the alpha motoneurones supplying fast and slow muscles. J. Physiol. (Lond.)142, 275–291 (1958)Google Scholar
  9. Gollnick, P. D., Armstrong, R. B., Saltin, B., Saubert, C. W., Sembrowich, W. E., Shepherd, R. E.: Effect of training on enzyme activity and fibre composition of human skeletal muscle. J. appl. Physiol.34, 107–111 (1973)Google Scholar
  10. Gomori, G.: Microtechnical demonstration of phosphatase in tissue sections. Proc. Soc. exp. Biol. (N. Y.)42, 23–26 (1939)Google Scholar
  11. Hermansen, L., Wachtlová, M.: Capillary density of skeletal muscle in well trained and untrained men. J. appl. Physiol.30, 860–863 (1971)Google Scholar
  12. Holloszy, J. O.: Blochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscles. J. biol. Chem.242, 2278–2282 (1967)Google Scholar
  13. Kowalski, K., Gordon, E. E., Martinez, A., Adam, J.: Changes in enzyme activities of various muscle fiber types in rat induced by different exercises. J. Histochem. Cytochem.17, 601–607 (1969)Google Scholar
  14. Nachlas, M. M., Tsou, K., De Souza, G., Cheng, C., Seligman, A.: Cytochemical demonstration of SDH by the use of a new p-nitrophenol substituted derivative. J. Histochem. Cytochem.5, 420–436 (1957)Google Scholar
  15. Parízková, J., Fiselt, F., Šprynarová, S., Wachtlová, M.: Body composition, aerobic capacity and density of muscle capillaries in young and old men. J. appl. Physiol.31, 323–325 (1971)Google Scholar
  16. Petrén, T.: Die totale Anzahl der Blutkapillaren in Herzen und in der Skelettmuskulatur bei Ruhe und nach langer Muskelübung. Anat. Anz.81, 165–172 (1935)Google Scholar
  17. Petrén, T., Sjöstrand, T., Sylvén, D.: Der Einfluß des Trainings auf die Häufigkeit der Kapillaren in Herz- und Skelettmuskulatur. Arbeitsphysiol.9, 376–384 (1937)Google Scholar
  18. Pette, S., Smith, M. E., Staudte, H. W., Vrbová, G.: Effects of long-term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pflügers Arch.338, 257–272 (1973)Google Scholar
  19. Quensel, W., Kramer, K.: Untersuchungen über den Muskelstoffwechsel des Warmblüters. II. Die Sauerstoffaufnahme des Muskels während der tetanischen Kontraktion. Pflügers Arch. ges. Physiol.241, 698–716 (1939)Google Scholar
  20. Riley, D. A., Allin, E. F.: The effects of inactivity, programmed stimulation and denervation on the histochemistry of skeletal muscle fiber types. Exp. Neurol.40, 391–413 (1973)Google Scholar
  21. Romanul, F. C. A.: Capillary supply and metabolism of muscle fibres. Arch. Neurol. (Chic.)12, 497–509 (1965)Google Scholar
  22. Romanul, F. C., Pollock, M.: The parallelism of changes in oxidative metabolism and capillary supply of skeletal muscle fibers. In: Locke: Modern neurology, pp. 203–213. Boston: Little, Brown & Co., Ltd. 1969Google Scholar
  23. Salmons, S., Vrbová, G.: The influence of activity on some contractile characteristics of mammalian slow and fast muscles. J. Physiol. (Lond.)201, 535–549 (1969)Google Scholar
  24. Saltin, B., Blomqvist, G., Mitchell, J. H., Johnson, K., Wildenthal, K., Chapman, C. B.: Response to exercise after bed rest and after training. Circulation38, Suppl. 7, pp. 1–78 (1968)Google Scholar
  25. Staudte, H. W., Exner, G. U., Pette, D.: Effects of short-term, high intensity (sprint) training on some contractile and metabolic characteristics of fast and slow muscle of the rat. Pflügers Arch.344, 159–168 (1973)Google Scholar
  26. Vanotti, A., Magiday, M.: Untersuchungen zum Studium des Trainiertseins, V. Arbeitsphysiol.7, 615–623 (1934)Google Scholar
  27. Vrbová, G.: The effect of motor neuron activity on the speed of contraction of striated muscle. J. Physiol. (Lond.)169, 513–526 (1963)Google Scholar
  28. Wachtlová, M., Pařízková, J.: Comparison of capillary density in skeletal muscles of animals differing in respect of their physical activity—the hare (Lepus europaeus), the domestic rabbit (Oryctolagus domesticus), the brown rat (Rattus norvegicus) and the trained and untrained rat. Physiol. bohemoslov.21, 489–495 (1972)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Margaret D. Brown
    • 1
  • Mary A. Cotter
    • 1
  • Olga Hudlická
    • 1
  • Gerta Vrbová
    • 1
  1. 1.Department of Physiology, Medical SchoolUniversity of BirminghamBirminghamUK

Personalised recommendations