Pflügers Archiv

, Volume 326, Issue 4, pp 341–356 | Cite as

Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes

  • Jochen Duhm


The effects of changes of the 2,3-DPG content and of the total concentration of organic phosphates on the oxygen affinity and the intracellular pH of human erythrocytes were studied. The oxygen affinity as characterized by the P50 (oxygen tension at 50% O2 saturation) increases from 15 to 45 mm Hg when the 2,3-DPG concentration is elevated from 0.1 to 24 μmoles/g by incubation of erythrocytes in the presence of inosine, pyruvate and phosphate.

In cells containing normal concentrations of 2,3-DPG, but accumulating high amounts of other organic phosphates during incubation with inosine and phosphate, the P50 was found to rise up to 36 mm Hg. This effect as well as a considerable part of the 2,3-DPG effect on the oxygen affinity of intact erythrocytes is due to a shift of the Donnan equilibrium induced by the accumulation of non-penetrating phosphate anions and consecutive changes of the intracellular pH, which in turn alter the oxygen affinity via the Bohr effect of hemoglobin.

The intracellular pH is related to the intracellular concentration of organic phosphates (extracellular pH 7.40) by the equation:
$${\text{pH}}_i {\text{ }} = {\text{ 7}}.306{\text{ }} - {\text{ }}0.0083{\text{ }} \cdot {\text{ }}P_{org} {\text{ }}(\mu moles organic P/g).$$
This dependency agrees closely with the theoretical relationship between the intracellular pH and the concentration of organic phosphates calculated from the osmolarities and the net charges of non-penetrating cell constituents.

After correction of the oxygen affinities to a constant intracellular pH the P50 does not further increase in cells containing 2,3-DPG concentrations above 8 μmoles/g and remains unaltered in erythrocytes accumulating other organic phosphates.


Erythrocyte Oxygen Affinity of Hemoglobin 2,3-Diphosphoglycerate Donnan Equilibrium Intracellular pH 


Erythrocyt Sauerstoff-Affinität von Hämoglobin 2,3-Diphosphoglycerat Donnan-Gleichgewicht Intracellulärer pH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartlett, G. R., Bucolo, G.: The metabolism of ribonucleoside by the human erythrocyte. Biochim. biophys. Acta (Amst.)156, 240 (1968).Google Scholar
  2. 2.
    Battaglia, F. C., McGaughey, H., Makowski, E. L., Mescia, G.: Postnatal changes in oxygen affinity of sheep red cells: A dual role of diphosphoglyceric acid. Amer. J. Physiol.219, 217 (1970).PubMedGoogle Scholar
  3. 3.
    Benesch, R., Benesch, R. E.: The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. biophys. Res. Commun.26, 162 (1967).PubMedCrossRefGoogle Scholar
  4. 4.
    Bergmeyer, H. U.: Methoden der enzymatischen Analyse. Weinheim/Bergstr.: Verlag Chemie 1962.Google Scholar
  5. 5.
    Bunn, H. F., Jandl, J. H.: Control of hemoglobin function within the red cell. New Engl. J. Med.282, 1414 (1970).PubMedCrossRefGoogle Scholar
  6. 6.
    Chanutin, A., Curnish, R. R.: Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem.121, 96 (1967).PubMedCrossRefGoogle Scholar
  7. 7.
    Delivoria-Papadopoulos, M., Oski, F., Gottlieb, A. J.: Oxygen-hemoglobin dissociation curves: Effect of inherited enzyme defects of the red cell. Science165, 601 (1969).PubMedGoogle Scholar
  8. 8.
    Duc, G., Engel, K.: Effect of 2,3-DPG concentration on hemoglobin-oxygen affinity of whole blood. Scand J. clin. Lab. Invest.24, 405 (1969).PubMedGoogle Scholar
  9. 9.
    Deuticke, B., Duhm, J., Dierkesmann, R.: Maximal elevation of 2,3-diphosphoglycerate concentrations in human erythrocytes: Influence on glycolytic metabolism and intracellular pH. Pflügers Arch.326, 15 (1971).PubMedCrossRefGoogle Scholar
  10. 10.
    De Verdier, C.-H., Garby, L., Hjelm, M.: Intraerythrocytic regulation of tissue oxygen tension. Acta Soc. Med. upsalien.74, 209 (1969).Google Scholar
  11. 11.
    Donnan, F. G.: Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie. Z. Elektrochem.17, 572 (1911).Google Scholar
  12. 12.
    Duhm, J.: Zwei Komponenten der Wirkung von 2,3-Diphosphoglycerat auf die Sauerstoff-Affinität von Hämoglobin in menschlichen Erythrocyten. Pflügers Arch.319, R 2 (1970).Google Scholar
  13. 13.
    — Deuticke, B., Gerlach, E.: 2,3-Diphospho-glycerat-Stoffwechsel und Glykose in Menschen-Erythrocyten. Einfluß von Sulfat, Tetrathionat und Disulfit. Hoppe-Seylers Z. physiol. Chem.350, 1008 (1969).PubMedGoogle Scholar
  14. 14.
    Duhm, J., Deuticke, B., Gerlach, E.: Complete restoration of oxygen transport function and 2,3-diphosphoglycerate concentration in stored blood. Transfusion (in press).Google Scholar
  15. 15.
    Duhm, J., Gerlach, E.: On the mechanisms of the hypoxia induced increase of 2,3-di-phosphoglycerate in erythrocytes. Studies on rat erythrocytes in vivo and on human erythrocytes in vitro. Pflügers Arch.326, 254 (1971).PubMedCrossRefGoogle Scholar
  16. 16.
    Eaton, J. W., Brewer, G. J.: The relationship between red cell 2,3-diphosphoglycerate and levels of hemoglobin in the human. Proc. nat. Acad. Sci. (Wash.)61, 756 (1968).CrossRefGoogle Scholar
  17. 17.
    Funder, J., Wieth, J. O.: Chloride and hydrogen ion distribution between human red cells and plasma. Acta physiol. scand.68, 234 (1966).CrossRefGoogle Scholar
  18. 18.
    Gerlach, E., Deuticke, B.: Eine einfache Methode zur Mikrobestimmung von Phosphat in der Papierchromatographie. Biochem. Z.337, 477 (1963).PubMedGoogle Scholar
  19. 19.
    —— Duhm, J.: Phosphat-Permeabilität und Phosphat-Stoffwechsel menschlicher Erythrocyten und Möglichkeiten ihrer experimentellen Beeinflussung. Pflügers Arch. ges. Physiol.280, 275 (1964).CrossRefGoogle Scholar
  20. 20.
    — Fleckenstein, A., Gross, E.: Der intermediäre Phosphat-Stoffwechsel des Menschen-Erythrocyten. Pflügers Arch. ges. Physiol.266, 528 (1958).CrossRefGoogle Scholar
  21. 21.
    Guest, G. M., Rapoports, S.: Organic acid-soluble phosphorus compounds of the blood. Physiol. Rev.22, 410 (1942).Google Scholar
  22. 22.
    Harris, E. J., Maizels, M.: Distribution of ions in suspensions of human erythrocytes. J. Physiol. (Lond.)118, 40 (1952).Google Scholar
  23. 23.
    Hill, A. V.: The possible effects of the aggregation of molecules of hemoglobin on its dissociation curve. J. Physiol. (Lond.)40, IV (1910).Google Scholar
  24. 24.
    Kiessling, W.: Über die Titrationskurven einiger 3-Kohlenstoff-Phosphorsäureester und der Inosimpyrophosphorsäure. Biochem. Z.273, 103 (1934).Google Scholar
  25. 25.
    Lenfant, C., Torrance, J., English, E., Finch, C. A., Reynafarje, C., Ramos, J., Faura, J.: Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J. clin. Invest.47, 2652 (1968).PubMedGoogle Scholar
  26. 26.
    —— Woodson, R. D., Jacobs, P., Finch, C. A.: Role of organic phosphates in the adaptation of man to hypoxia. Fed. Proc.29, 1115 (1970).PubMedGoogle Scholar
  27. 27.
    Maizels, M., Paterson, J. L. H.: Base binding in erythrocytes. Biochem. J.31, 1642 (1937).PubMedGoogle Scholar
  28. 28.
    McConaghey, P. D., Maizels, M.: The osmotic coefficients of hemoglobin in red cells under varying conditions. J. Physiol. (Lond.)155, 28 (1961).Google Scholar
  29. 29.
    McManus, T. J., Borgese, T. A.: Effect of pyruvate on metabolism of inosine by erythrocytes. Fed. Proc.20, 65 (1961).Google Scholar
  30. 30.
    Miller, L. D., Oski, F. A., Diaco, J. E., Sugerman, H. J., Gottlieb, A. J., Davidson, D., Delivoria-Papadopoulos, M.: The affinity of hemoglobin for oxygen: Its control and in vivo significance. Surgery68, 187 (1970).PubMedGoogle Scholar
  31. 31.
    Oski, F. A., Gottlieb, A. J., Delivoria-Papadopoulos, M., Miller, W. W.: Red cell 2,3-diphosphoglycerate levels in subjects with chronic hypoxemia. New Engl. J. Med.200, 1165 (1969).CrossRefGoogle Scholar
  32. 32.
    Paniker, E. V., Beutler, E.: Effect of normal metabolites on the oxygenhemoglobin equilibrium. Proc. Soc. exp. Biol. (N. Y.)135, 389 (1970).Google Scholar
  33. 33.
    Passoneau, J. V., Lowry, O. H.: The role of phosphofructokinase in metabolic regulation. In: Advances in enzyme regulation, Vol. 2, p. 265. Ed. G. Weber. Oxford-London-Edinburgh-New York-Toronto-Sidney-Paris-Braunschweig: Pergamon Press 1964.Google Scholar
  34. 34.
    Rapoport, S. M., Guest, G. M.: The role of diphosphoglyceric acid in the electrolyte equilibrium of blood cells: Studies of pyloric obstructution in dogs. J. biol. Chem.131, 675 (1939).Google Scholar
  35. 35.
    Rauen, H. M.: Biochemisches Taschenbuch, Bd. 1. Berlin-Göttingen-Heidelberg: Springer 1964.Google Scholar
  36. 36.
    Rørth, M.: Dependence of oxyhemoglobin dissociation and intraerythrocytic 2,3-DPG on acid-base status of blood. I. In vitro studies on reduced and oxygenated blood. In: Red cell metabolism and function, p. 57. Ed. G. J. Brewer. New York-London: Plenum Press 1970.Google Scholar
  37. 37.
    Roughton, F. J. W.: Transport of oxygen and carbon dioxide. In: Handbook of physiology, Section 3: Respiration, Vol 1, p. 767. Ed. W. O. Fenn and H. Rahn. Washington: Am. Physiol. Soc. 1964.Google Scholar
  38. 38.
    Sigaard-Andersen, O., Jørgensen, K., Naeraa, N.: Spectrophotometric determination of oxygen saturation in capillary blood. Scand. J. Lab. Invest.14, 298 (1962).Google Scholar
  39. 39.
    Torrance, J. D., Bartlett, G. R.: Altitude hypoxia and erythrocyte phosphates. Biochim. biophys. Acta (Amst.)215, 409 (1970).Google Scholar
  40. 40.
    Valeri, C. R., Fortier, N. L.: Red-cell 2,3-diphosphoglycerate and creatine levels in patients with red-cell mass deficits or with cardiopulmonary insufficiency. New Engl. J. Med.281, 1452 (1969).PubMedCrossRefGoogle Scholar
  41. 41.
    Van Slyke, D. D., Wu, H., McL-ean, F. C.: Studies of gas and electrolyte equilibria in the blood. V. Factors controlling the electrolyte and water distribution in the blood. J. biol. Chem.56, 765 (1923).Google Scholar
  42. 42.
    Woodson, R. D., Torrance, J. D., Shappell, S. D., Lenfant, C.: The effect of cardiac disease on hemoglobin-oxygen binding. J. clin. Invest.49, 1349 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Jochen Duhm
    • 1
  1. 1.Department of Physiology, Medical FacultyTechnical University AachenGermany

Personalised recommendations