Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Cardiac output, arterial and mixed-venous O2 saturation, and blood O2 dissociation curve in growing rats adapted to a simulated altitude of 3500 m

  • 72 Accesses

  • 34 Citations


In rats adapted to a simulated altitude of 3500 m cardiac output measured at hypoxia by the direct Fick principle was significantly lower than in the control animals (mean values 54.3 ml/min and 69.8 ml/min, resp.). The decrease of cardiac output was accompanied by an increase of arterio-venous O2 difference and a decrease of stroke volume in the adapted rats. It is suggested that the decrease of cardiac output might be related to the increase of hematocrit. The adapted rats also showed higher arterial and mixed-venous O2 content (both at hypoxia) and increased O2 capacity. Arterial O2 saturation of the animals previously exposed to simulated high altitude hypoxia was significantly higher (67.3% as against 61.2% in the controls). The standard O2 dissociation curve showed lower oxygen affinity in the blood of the adapted animals but no physiological advantage concerning the transport of O2 to the tissues was found. In another group of animals the Bohr factor was estimated and no difference was found between rat and human blood.

This is a preview of subscription content, log in to check access.


  1. Anderson, C. B., Gray, F. D., Jr.: The circulatory and ventilatory effects of normovolemic polycythemia. Yale J. Biol. Med.35, 233–240 (1962).

  2. Asmussen, E., Consolazio, F. C.: The circulation in rest and work on Mount Evans (4300 m). Amer. J. Physiol.132, 555–563 (1941).

  3. Barcroft, J.: The respiratory function of blood. Part I. Lessons from high altitudes. Cambridge: Cambridge University Press 1925.

  4. Barker, J. N.: Role of hemoglobin affinity and concentration in determining hypoxia tolerance of mammals during infancy, hypoxia, hyperoxia and irradiation. Amer. J. Physiol.189, 281–289 (1957).

  5. Bartels, H.: Oxygen capacity and affinity in mammals during high altitude acclimatization. In: Exercise at altitude, ed. R. Margaria, pp. 159–162. Amsterdam: Excerpta Medica Foundation 1967.

  6. —, Harms, H.: Sauerstoffdissoziationskurven des Blutes von Säugetieren. Pflügers Arch. ges Physiol.268, 334–365 (1959).

  7. Baumann, R., Bauer, Ch., Bartels, H.: Influence of chronic and acute hypoxia on oxygen affinity and red cell 2,3 diphosphoglycerate of rats and guinea pigs. Respir. Physiol.11, 135–144 (1971).

  8. Beznák, M.: Hemodynamic changes in hypophysectomized rats. Circulat. Res.7, 907–916 (1959).

  9. Bullard, R. W., Broumand, C., Meyer, F. R.: Blood characteristics and volume in two rodents native to high altitude. J. appl. Physiol.21, 994–998 (1966).

  10. Feigen, G. A., Johnson, P. K.: Blood volumes and heart weights in two strains of rats during adaptation to a natural altitude of 12,470 ft. In: The physiological effects of high altitude, ed. W. H. Weihe, pp. 45–58. Oxford: Pergamon Press 1964.

  11. Grollman, A.: Physiological variations of the cardiac output of man. VII. The effect of high altitude on the cardiac output and its related functions: an account of experiments conducted on the summit of Pike's Peak, Colorado. Amer. J. Physiol.93, 19–40 (1930).

  12. Guyton, A. C.: Circulatory Physiology: Cardiac output and its regulation. Philadelphia: W. B. Saunders 1963.

  13. —, Richardson, T. Q.: Effect of hematocrit on venous return. Circulat. Res.9, 157–164 (1961).

  14. Hansen, J. T., Pace, N., Barnstein, N. J.: Cardiovascular changes at high altitude. In: The physiological effects of high altitude, ed. W. H. Weihe, pp. 251–257. Oxford: Pergamon Press 1964.

  15. Hartley, L. H., Alexander, J. K., Modelski, M., Grover, R. F.: Subnormal cardiac output at rest and during exercise in residents at 3100 m altitude. J. appl. Physiol.23, 839–848 (1967).

  16. Kreuzer, F.: Transport of O2 and CO2 at altitude. In: Exercise at altitude, ed. R. Margaria, pp. 149–158. Amsterdam: Excerpta Medica Foundation 1967.

  17. Lenfant, C., Torrance, J., English, E., Finch, C. A., Reynafarje, C., Ramos, J., Faura, J.: Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J. clin. Invest.47, 2652–2656 (1968).

  18. Margaria, R., Green, A. A.: The first dissociation constant, pK1', of carbonic acid in hemoglobin solutions and its relation to the existence of a combination of hemoglobin with carbon dioxide. J. biol. Chem.102, 611–634 (1933).

  19. Naeraa, N., Strange Petersen, E., Boye, E.: The influence of simultaneous, independent changes in pH and carbon dioxide tension on the in vitro oxygen tension-saturation relationship of human blood. Scand. J. clin. Lab. Invest.15, 141–151 (1963).

  20. Popovic, V. P., Kent, K. M.: 120-Day study of cardiac output in unanesthetized rats. Amer. J. Physiol.207, 767–770 (1964).

  21. Replogle, R. L., Merrill, E. W.: Experimental polycythemia and hemodilution. J. thorac. cardiovasc. Surg.60, 582–588 (1970).

  22. Richardson, T. Q., Guyton, A. C.: Effects of polycythemia and anemia on cardiac output and other circulatory factors. Amer. J. Physiol.197, 1167–1170 (1959).

  23. Rotta, A., Cánepa, A., Hurtado, A., Velásquez, T., Chávez, R.: Pulmonary circulation at sea level and at high altitudes. J. appl. Physiol.9, 328–336 (1956).

  24. Roughton, F. J. W., Scholander, P. F.: Micro gasometric estimation of the blood gases. I. Oxygen. J. biol. Chem.148, 541–550 (1943).

  25. Severinghaus, J. W.: Blood gas calculator. J. appl. Physiol.21, 1108–1116 (1966).

  26. Snedecor, G. W., Cochran, W. G.: Statistical Methods. Ames, Iowa: Iowa University Press 1967.

  27. Torrance, J. D., Lenfant, C., Cruz, J., Marticorena, E.: Oxygen transport mechanisms in residents at high altitude. Respir. Physiol.11, 1–15 (1970/71).

  28. Tribukait, B.: Der Einfluß chronischer Hypoxie entsprechend 1000–8000 m Höhe auf die Erythropoiese der Ratte. Acta physiol. scand.57, 1–25 (1963).

  29. —, Brümmer, R.: Verschiebung der Sauerstoff-Hämoglobin-Dissoziationskurve der Maus nach Hypoxie entsprechend 6000 m Höhe. Acta med. scand., Suppl.472, 308–316 (1967).

  30. Turek, Z., Frans, A., Kreuzer, F.: Steady-state diffusing capacity for carbon monoxide in the rat. Respir. Physiol.12, 346–360 (1971).

  31. ———: Hypoxic steady-state pulmonary diffusing capacity for CO and alveolararterial O2 pressure differences in growing rats after adaptation to a simulated altitude of 3500 m. Pflügers Arch.335, 1–9 (1972).

  32. Vogel, J. A., Hansen, J. E., Harris, C. W.: Cardiovascular responses in man during exhaustive work at sea level and high altitude. J. appl. Physiol.23, 531–539 (1967).

  33. Weber, P. M., Pollycove, M., Bacaner, M. B., Lawrence, J. H.: Cardiac output in polycythemia vera. J. Lab. clin. Med.73, 753–762 (1969).

  34. Weisse, A. B., Calton, F. M., Kuida, H., Hecht, H. H.: Hemodynamic effects of normovolemic polycythemia in dogs at rest and during execrise. Amer. J. Physiol.207, 1361–1366 (1964).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Turek, Z., Ringnalda, B.E.M., Hoofd, L.J.C. et al. Cardiac output, arterial and mixed-venous O2 saturation, and blood O2 dissociation curve in growing rats adapted to a simulated altitude of 3500 m. Pflugers Arch. 335, 10–18 (1972). https://doi.org/10.1007/BF00586931

Download citation

Key words

  • Cardiac Output
  • Blood O2 Dissociation Curve
  • High Altitude
  • Rat