Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sensory separation in climbing and mossy fiber inputs to cat vestibulocerebellum

  • 35 Accesses

  • 26 Citations


Electrical or flash stimulation of the visual pathway evoked in the vestibulocerebellum of barbiturate anesthetized cats, field and unitary potentials characteristic of climbing fiber (CF) activation of Purkinje cells. The latency of the CF field potentials was 11–15 msec in the flocculus and 14–19 msec in the nodulus/ventral uvula. Mossy fiber (MF) related field and unitary responses were not observed following visual stimulation. Conversely, electrical stimulation of the VIIIth nerve evoked in the vestibulocerebellum MF-related field and unitary potentials, exclusively. Despite this dichotomy, the field potentials evoked by visual and vestibular stimulation frequently overlapped within the cerebellar cortex. This overlap was shown at the level of individual Purkinje cells by means of extra- and intracellular recordings which demonstrated vestibulo-visual convergence. These observations indicate that a given sensory modality may reach specific cerebellar areas utilizing only one of the two cerebellar afferent systems. It is concluded that the MF and CF afferent systems, when considered as sensory inputs, can operate as independent information channels.

This is a preview of subscription content, log in to check access.


  1. Araki, T., Otani, T.: Response of single motoneurones to direct stimulation in toad's spinal cord. J. Neurophysiol.18, 472–485 (1955)

  2. Baker, R., Precht, W., Llinás, R.: Mossy and climbing fiber projections of extraocular muscle afferents to the cerebellum. Brain Res.38, 440–445 (1972)

  3. Berthoz, A., Llinás, R.: Afferent neck projection to the cat cerebellar cortex. Exp. Brain Res.20, 385–401 (1974)

  4. Brodal, A., Høivik, B.: Site and mode of termination of primary vestibulocerebellar fibres in the cat. An experimental study with silver impregnation methods. Arch. ital. Biol.102, 1–21 (1964)

  5. Buchtel, H. A., Iosif, G., Marchesi, G. F., Provini, L., Strata, P.: Analysis of activity evoked in cerebellar cortex by stimulation of visual pathways. Exp. Brain Res.15, 278–288 (1972)

  6. Eccles, J. C.: Review Lecture. The cerebellum as a computer: Patterns in space and time. J. Physiol. (Lond.)229, 1–32 (1973)

  7. Eccles, J. C., Llinás, R., Sasaki, K.: The excitatory synaptic actions of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. (Lond.)182, 268–296 (1966a)

  8. Eccles, J. C., Llinás, R., Sasaki, K.: The mossy fiber-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp. Brain Res.1, 82–101 (1966b)

  9. Eccles, J. C., Llinás, R., Sasaki, K.: Intracellularly recorded responses of the cerebellar Purkinje cells. Exp. Brain Res.1, 161–183 (1966c)

  10. Eccles, J. C., Sabah, N. H., Schmidt, R. F., Táboříková, H.: Integration by Purkinje cells of mossy and climbing fiber inputs from cutaneous mechanoreceptors. Exp. Brain Res.15, 498–520 (1972)

  11. Eccles, J. C., Sasaki, R., Strata, P.: Interpretation of the potential fields generated in the cerebellar cortex by a mossy fiber volley. Exp. Brain Res.3, 58–80 (1967)

  12. Ferin, M., Grigorian, R. A., Strata, P.: Mossy and climbing fiber activation in cat cerebellum by stimulation of labyrinth. Exp. Brain Res.12, 1–17 (1971)

  13. Iosif, G., Pompeiano, O., Strata, P., Thoden, U.: The effect of stimulation of spindle receptors and Golgi tendon organs on the cerebellar anterior lobe. II. Responses of Purkinje cells to sinusoidal stretch or contraction of the hindlimb extensor muscles. Arch. ital. Biol.110, 502–542 (1972)

  14. Ishikawa, K., Kawaguchi, S., Rowe, M. J.: Actions of afferent impulses from muscle receptors on cerebellar Purkinje cells. I. Responses to muscle vibration. Exp. Brain Res.15, 177–193 (1972)

  15. Ito, M., Yoshida, M., Obata, K., Kawai, N., Udo, M.: Inhibitory control of intracerebellar nuclei by the Purkinje cell axons. Exp. Brain Res.10, 64–80 (1970)

  16. Lisberger, S. G., Fuchs, A.: Response of flocculus Purkinje cells to adequate vestibular stimulation in the alert monkey: Fixation vs. compensatory eye movements. Brain Res.69, 347–353 (1974)

  17. Llinás, R.: Neuronal operations in cerebellar transactions. In: F. O. Schmitt (Ed.): The neurosciences: Second study program, pp. 409–426. New York: Rockefeller Univ. Press 1970

  18. Llinás, R., Bloedel, J. R., Hillman, D. E.: Functional characterization of the neuronal circuitry of the frog cerebellar cortex. J. Neurophysiol.32, 847–870 (1969)

  19. Llinás, R., Wolfe, J. W.: Single cell responses from the cerebellum of rhesus preceding voluntary, vestibular and optokinetic saccadic eye movements. Soc. for Neurosci. (Abst.)2, 201 (1972)

  20. Maekawa, K., Simpson, J. I.: Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual system. J. Neurophysiol.36, 649–666 (1973)

  21. Precht, W., Llinás, R.: Functional organization of the vestibular afferents to the cerebellar cortex of frog and cat. Exp. Brain Res.9, 30–52 (1969)

  22. Shimazu, H., Precht, W.: Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J. Neurophysiol.28, 991–1013 (1965)

  23. Shofer, R. J., Nahvi, M. J.: Firing patterns induced by sound in single units of the cerebellar cortex. Exp. Brain Res.8, 327–345 (1969)

  24. Thomas, R. C., Wilson, V. J.: Precise localization of Renshaw cells with a new marking technique. Nature (Lond.)206, 211–213 (1965)

  25. Wilson, V. J., Anderson, J. A., Felix, D.: Unit and field potential activity evoked in the pigeon vestibulocerebellum by stimulation of individual semicircular canals. Exp. Brain Res.19, 142–157 (1974)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simpson, J.I., Precht, W. & Llinás, R. Sensory separation in climbing and mossy fiber inputs to cat vestibulocerebellum. Pflugers Arch. 351, 183–193 (1974).

Download citation

Key words

  • Cerebellum
  • Vestibular System
  • Visual System
  • Climbing Fibers
  • Mossy Fibers