Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Determination of segmental resistances in the canine kidney

  • 15 Accesses

  • 2 Citations


Series connected segmental resistances in the normal canine kidney were studied under free flow and under stop flow conditions. For the calculation of glomerular capillary pressure equation GFR =k (p glp irp co) has been used. The permeability constant (k) was determined under the assumption that below the autoregulatory rangep gl=p art; supposing the independence ofk of perfusion pressure,p gl could be calculated at any arterial pressure. Intrarenal deep venous pressure equals proximal tubular and peritubular capillary pressures in free flow; stabilized ureter occlusion pressure measures intrarenal pressures in stop flow.

The procedure enables the determination of glomerular capillary pressure without recurring to ureter occlusion. Thusp gl amounts to 88 mm Hg (free flow) and 96 mm Hg (stop flow) whereas the tranditional manner of calculation (p ur-stop+p co) yields 73 mm Hg for both conditions. Owing to intense residual filtrationp gl exceedsp ur-stop+p co even under stop flow conditions.

This is a preview of subscription content, log in to check access.


  1. Abe, Y., Dixon, F., McNay, J. L.: Dissociation between autoregulation of renal blood flow and glomerular filtration rate. Amer. J. Physiol.219, 986–993 (1970).

  2. Bálint, P., Forgács, I.: Funktion und Sauerstoffverbrauch der hydronephrotischen Niere. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.246, 517–526 (1964).

  3. ——: Considerations on the evaluation of the clearance methods. Acta physiol. Acad. Sci. hung.25, 203–215 (1964).

  4. — Visy, M.: “True creatinine” and “pseudocreatinine” in blood plasma in the dog. Acta physiol. Acad. Sci. hung.28, 265–272 (1965).

  5. Fisher, R. A.: Statistical methods for research workers. 10th ed. London-Edinburgh: Oliver and Boyd 1946.

  6. Gertz, K. H., Mangos, J. A., Braun, G., Pagel, H. D.: Pressure in the glomerular capillaries of the rat kidney and its relation to arterial blood pressure. Pflügers Arch. ges. Physiol.288, 369–374 (1966).

  7. Gómez, D. M.: Evaluation of renal resistances, with special reference to changes in essential hypertension. J. clin. Invest.30, 1143–1155 (1951).

  8. Gottschalk, C. W., Mylle, M.: Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Amer. J. Physiol.185, 430–439 (1956).

  9. Hinshaw, L. B.: Mechanism of renal autoregulation: role of tissue pressure and description of a multifactor hypothesis. Circulat. Res.15, suppl. 1, 1/120–1/129 (1964).

  10. Little, J. M.: A modified diphenylamine procedure for the determination of inulin. J. biol. Chem.180, 747–754 (1949).

  11. Navar, L. G.: Minimal preglomerular resistance and calculation of normal glomerular pressure. Amer. J. Physiol.219, 1658–1664 (1970).

  12. Omachi, A., Macey, R. I.: Intratubular fluid movement in the dog kidney during stop flow. Proc. Soc. exp. Biol. Med. (N. Y.)101, 386–388 (1959).

  13. Pappenheimer, J. R.: Über die Permeabilität der Glomerulumembran in der Niere. Klin. Wschr.33, 362–365 (1955).

  14. Schirmeister, J., Schmidt, L., Söling, H. D.: Über die Autoregulation des Glomerulusfiltrates bei intratubulärem Druckanstieg am Hund. Klin. Wschr.10, 883–889 (1962).

  15. Selkurt, E. E.: Effect of unilateral blockade on renal blood flow and urinary concentrating ability. Amer. J. Physiol.205, 286–292 (1963).

  16. —, Deetjen, P., Brechtelsbauer, H.: Tubular pressure gradients and filtration dynamics during urinary stop flow in the rat. Pflügers Arch. ges. Physiol.286, 19–35 (1965).

  17. Smith, H. W., Finkelstein, N., Aliminosa, L., Crawford, B., Graber, M.: The renal clearances of substituted hippuric acid derivatives and other aromatic acids in dog and man. J. clin. Invest.24, 388–404 (1945).

  18. Swann, H. G., Hink, B. W., Koester, H., Moore, V., Prine, J. M.: The intrarenal venous pressure. Science115, 64–65 (1952).

  19. Taylor, M. G., Ullmann, E.: Glomerular filtration after obstruction of the ureter. J. Physiol. (Lond.)157, 38–63 (1961).

  20. Thurau, K., Henne, G.: Die transmurale Druckdifferenz der Widerstandsgefäße als Parameter der Widerstandsregulation in der Niere. Pflügers Arch. ges. Physiol.279, 156–177 (1964).

  21. — Kramer, K., Brechtelsbauer, H.: Die Reaktionsweise der glatten Muskulatur der Nierengefäße auf Dehnungsreize und ihre Bedeutung für die Autoregulation des Nierenkreislaufes. Pflügers Arch. ges. Physiol.268, 188–203 (1959).

  22. — Wober, E.: Zur Lokalisation der autoregulativen Widerstandsänderungen in der Niere. Pflügers Arch. ges. Physiol.274, 553–566 (1962).

  23. Winton, F. R.: Pressures and flows in the kidney. In: Modern views on the secretion of urine, p. 61. ed. F. R. Winton. London: Churchill 1956.

  24. Wirz, H.: Druckmessung in Kapillaren und Tubuli der Niere durch Mikropunktion. Helv. physiol. pharmacol. Acta13, 42–49 (1955).

  25. —: Die Druckverhältnisse in der normalen Niere. Schweiz. med. Wschr.86, 377–382 (1956).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bálint, P., Fekete, A., Molnár, L. et al. Determination of segmental resistances in the canine kidney. Pflugers Arch. 327, 274–284 (1971). https://doi.org/10.1007/BF00586863

Download citation


  • Renal Resistance
  • Glomerular Capillary Pressure
  • Glomerular Permeability Coefficient
  • Intrarenal Pressure Drop