Advertisement

Pflügers Archiv

, Volume 324, Issue 3, pp 249–266 | Cite as

The diffusion of carbon dioxide in erythrocytes and hemoglobin solutions

  • G. Gros
  • W. Moll
Article

Summary

The CO2 diffusion constant (Krogh's diffusion constant) has been estimated from the CO2 flux across layers with defined thickness under steady state conditions.

At 22°C and in hemoglobin solutions with a concentration of 33 g% the diffusion constant for CO2 was found to be 3.3×10−4 cm2 min−1 atm−1. This value is about 40% of the diffusion constant for CO2 in water. The relationship between the diffusion constant and the hemoglobin concentration was approximately linear in a concentration range of 10–40 g%. The temperature coefficient of the diffusion constant was −0.5%/°C both in water and hemoglobin solutions. At 38°C and in a hemoglobin solution with a concentration of 33 g%, the diffusion constant for CO2 was therefore 3.0×10−4 cm2 min−1 atm−1, the diffusion coefficient 11×10−6 cm2 s−1.

A general theory for the diffusion of CO2 in hemoglobin solutions has been derived. According to this theory the diminution of the CO2 diffusion in hemoglobin solutions in comparison to water can be explained quantitatively by a reduction of the water space by the hemoglobin molecules.

The diffusion constant for CO2 in layers of erythrocytes was insignificantly (0–3%) smaller than in hemoglobin solutions with the same hemoglobin concentration. It is concluded that the erythrocyte membrane does not offer a considerable resistance for the CO2 diffusion.

Key-words

Carbon Dioxide Diffusion Hemoglobin Erythrocytes Membrane Permeability 

Schlüsselwörter

Kohlendioxid Diffusion Hämoglobin Erythrocyten Membranpermeabilität 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blank, M., Roughton, F. J. W.: The permeability of monolayers to carbon dioxide. Trans. Faraday Soc.56, 1832–1841 (1960).Google Scholar
  2. Davidson, J. F., Cullen, E. J.: The determination of diffusion coefficients for sparingly soluble gases in liquids. Trans. Instn. Chem. Engrs.35, 51–60 (1957).Google Scholar
  3. Einstein, A.: Eine neue Bestimmung der Moleküldimensionen. Ann. Physik19, 289–306 (1906).Google Scholar
  4. Forster, R. E.: Rate of gas uptake by red cells. In: Handbook of Physiology Section 3. Respiration, Vol. 1, edited by W. O. Fenn and H. Rahn. Washington 1964.Google Scholar
  5. Gros, G.: Die freie und erleichterte Diffusion von Kohlendioxid in Erythrocyten und Hämoglobinlösungen. Inauguraldissertation, Tübingen 1969.Google Scholar
  6. Hagenbach, A.: Über die Diffusion von Gasen durch wasserhaltige Gelatine. Ann. Phys. Chem. N. F.65, 673–706 (1898).Google Scholar
  7. Handbook of Chemistry and Physics. Ohio 1952.Google Scholar
  8. Hennig, A.: Bestimmung der Oberfläche beliebig geformter Körper mit besonderer Anwendung auf Körperhaufen im mikroskopischen Bereich. Mikroskopie11, 1–20 (1956).Google Scholar
  9. Himmelblau, D. M.: Diffusion of dissolved gases in liquids. Chem. Rev.64, 527–550 (1964).Google Scholar
  10. Hüfner, G.: Über die Bestimmung der Diffusionskoeffizienten einiger Gase für Wasser. Ann. Phys. phys. Chem.60, 134–168 (1897).Google Scholar
  11. Kleihauer, E., Betke, K.: Zur Hämoglobinbestimmung mittels Cyanhämiglobin nach Betke und Savelsberg. Ärztl. Lab.3, 202–205 (1957).Google Scholar
  12. Kreuzer, F.: Über die Diffusion von Sauerstoff in Serumeiweißlösungen verschiedener Konzentration. Helv. physiol. Acta8, 505–516 (1950).Google Scholar
  13. —, Yahr, W. Z.: Influence of red cell membrane on diffusion of oxygen. J. appl. Physiol.15, 1117–1122 (1960).Google Scholar
  14. Kutchai, H., Staub, N. C.: Steady-state, hemoglobin-facilitated O2-transport in human erythrocytes. J. gen. Physiol.53, 576–589 (1969).Google Scholar
  15. Longmuir, I. S., Forster, R. E., Woo, C.-Y.: Diffusion of carbon dioxide through thin layers of solution. Nature (Lond.)209, 393–394 (1966).Google Scholar
  16. Millington, R. J.: Diffusion constant and diffusion coefficient. Science122, 1090 (1955).Google Scholar
  17. Moll, W.: The diffusion coefficient of haemoglobin. Resp. Physiol.1, 357–365 (1966).Google Scholar
  18. Moore, W. J.: Physical Chemistry. London-Tokyo-Sydney 1962.Google Scholar
  19. Nijsing, R. A. T. O., Hendriksz, R. H., Kramers, H.: Absorption of CO2 in jets and falling films of electrolyte solutions with and without chemical reactions. Chem. Engng. Sci.10, 88–104 (1959).Google Scholar
  20. Perutz, M. F.: Submicroscopic structure of the red cell. Nature (Lond.)161, 204–205 (1948).Google Scholar
  21. —: The croonian lecture 1968. The haemoglobin molecule. Proc. roy. Soc. B173, 113–140 (1969).Google Scholar
  22. Piiper, J.: Geschwindigkeit des CO2-Austausches zwischen Erythrocyten und Plasma. Pflügers Arch. ges. Physiol.278, 500–512 (1964).Google Scholar
  23. Polson, O.: Untersuchungen über die Diffusionskonstanten der Proteine. Kolloid-Z.87, 149–181 (1939).Google Scholar
  24. Ponder, E.: Hemolysis and related phenomena. New York 1948.Google Scholar
  25. Rehm, T. R., Moll, A. J., Babb, A. L.: Unsteady state absorption of carbon dioxide by dilute sodium hydroxide solutions. A. I. Ch. E. J.9, 760–765 (1963).Google Scholar
  26. Ringbom, A.: Über die Bestimmung der Diffusionskoeffizienten von Gasen in Flüssigkeiten. Z. anorg. allg. Chem.238, 94–102 (1938).Google Scholar
  27. Roughton, F. J. W.: Diffusion and simultaneous chemical reaction velocity in haemoglobin solutions and red cell suspensions. Progr. Biophys. biophys. Chem.9, 56–104 (1959).Google Scholar
  28. —: Kinetics of gas transport in the blood. Brit. med. Bull.19, 80–89 (1963).Google Scholar
  29. Scholander, P. F.: Analyzer for accurate estimation of respiratory gases in one-half cubic centimeter samples. J. biol. Chem.167, 235–249 (1947).Google Scholar
  30. —: Oxygen transport through hemoglobin solutions. Science131, 585–590 (1960).Google Scholar
  31. Siesjö, B. K., Thews, G.: Ein Verfahren zur Bestimmung der CO2-Leitfähigkeit und des CO2-Diffusionskoeffizienten im Gehirngewebe. Pflügers Arch. ges. Physiol.276, 192–210 (1962).Google Scholar
  32. Slyke, van, D. D., Sendroy, J., Hastings, A. B., Neill, J. M.: Studies of gas and electrolyte equilibria in blood. J. biol. Chem.78, 765–799 (1928).Google Scholar
  33. Stefan, M. J.: Über die Diffusion der Kohlensäure durch Wasser und Alkohol. S.-B. Akad. Wiss. Wien. math.-nat. K., Abt. II77, 371–409 (1878).Google Scholar
  34. Tammann, G., Jessen, V.: Über die Diffusionskoeffizienten von Gasen in Wasser und ihre Temperaturabhängigkeit. Z. anorg. allg. Chem.179, 125–144 (1929).Google Scholar
  35. Tang, Y. P., Himmelblau, D. M.: Interphase mass transfer for laminar concurrent flow of carbon dioxide and water between parallel plates. A. I. Ch. E. J.9, 630–635 (1963).Google Scholar
  36. Thews, G.: Ein Verfahren zur Bestimmung des O2-Diffusionskoeffizienten, der O2-Leitfähigkeit und des O2-Löslichkeitskoeffizienten im Gehirngewebe. Pflügers Arch. ges. Physiol.271, 227–244 (1960).Google Scholar
  37. Tiselius, A., Gross, D.: Messungen der Diffusion von Eiweißkörpern. Kolloid-Z.66, 11–20 (1934).Google Scholar
  38. Tomkeieff, S. I.: Linear intercepts, areas and volumes. Nature (Lond.)155, 24 (1945).Google Scholar
  39. Unver, A. A., Himmelblau, D. M.: Diffusion coefficients of CO2, C2H4, C3H6, and C4H8 in water from 6° to 65°C. J. chem. Eng. Data9, 428–431 (1964).Google Scholar
  40. Wright, Ch. I.: The diffusion of carbon dioxide in tissues. J. gen. Physiol.17, 657–676 (1934).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • G. Gros
    • 1
  • W. Moll
    • 1
  1. 1.Institut für Physiologie der Medizinischen Hochschule HannoverHannoverGermany

Personalised recommendations