Pflügers Archiv

, Volume 323, Issue 3, pp 273–278 | Cite as

Modulation of sensory transmission in cat lemniscal system during voluntary movement

  • C. Ghez
  • G. L. Lenzi
Short Communications and Technical Notes


Adult cats were trained to lift their forepaw, depress a lever and then replace their paw on the ground. The potential recorded in the medial lemniscus to stimulation of the superficial radial nerve in the forelimb involved in the movement is depressed both prior to and during displacement of the limb. These changes did not result from movement of the stimulating electrode. The timing of the suppression in lemniscal transmission suggests a central origin of this effect.


Operant Conditioning Voluntary Movement Cutaneous Nerve Stimulation Evoked Potential Medial Lemniscus 


Konditionierung Willkürbewegungen Hautnervenstimulation Evozierte Potentiale Lemniscus Medialis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ainsworth, A., Gaffan, G. D., O'Keefe, J., Sampson, R.: A technique for recording units in the medulla of the awake freely moving rat. J. Physiol. (Lond.)202, 80P-82P (1969).Google Scholar
  2. 2.
    Andersen, P., Eccles, J. C., Oshima, T., Schmidt, R. F.: Mechanisms of synaptic transmission in the cuneate nucleus. J. Neurophysiol.27, 1096–1116 (1964).Google Scholar
  3. 3.
    Carli, G., Diete-Spiff, K., Pompeiano, O.: Presynaptic and postsynaptic inhibition of transmission of somatic afferent volleys through the cuneate nucleus during sleep. Arch. ital. Biol.105, 52–82 (1967).Google Scholar
  4. 4.
    Evarts, E. V.: Temporal patterns of discharge of pyramidal tract neurons during sleep and waking in the monkey. J. Neurophysiol.27, 152–171 (1964).Google Scholar
  5. 5.
    —, Thach, W. T.: Cerebro-cerebellar relations. Physiol. Rev.31, 451–498 (1969).Google Scholar
  6. 6.
    Gordon, G., Horrobin, D.: Antidromic and synaptic responses in the cat's gracile nucleus to cerebellar stimulation. Brain Res.5, 419–421 (1967).Google Scholar
  7. 7.
    —, Jukes, M. G. M.: Descending influences on the exteroceptive organization of the cat's gracile nucleus. J. Physiol. (Lond.)173, 291–319 (1964).Google Scholar
  8. 8.
    Jabbur, S. J., Towe, A. L.: Cortical excitation of neurons in dorsal column nuclei of cat, including an analysis of pathways. J. Neurophysiol.24, 499–509 (1961).Google Scholar
  9. 9.
    Levitt, M., Carreras, M., Liu, C. N., Chambers, W. W.: Pyramidal and extrapyramidal modulation of somatosensory activity in the gracile and cuneate nuclei. Arch. ital. Biol.102, 197–229 (1964).Google Scholar
  10. 10.
    Rosén, I.: Afferent connexions to group I activated cells in the main cuneate nucleus of the cat. J. Physiol. (Lond.)205, 209–236 (1969).Google Scholar
  11. 11.
    Sotgiu, M.-L., Cesa-Bianchi, M.-G.: Primary afferent depolarization in the cuneate nucleus induced by stimulation of cerebellar and thalamic non-specific nuclei. Electroenceph. clin. Neurophysiol.29, 156–165 (1970).Google Scholar
  12. 12.
    Taub, A.: Local, segmental and supraspinal interaction with a dorsolateral spinal cutaneous afferent system. Exp. Neurol.10, 357–374 (1964).Google Scholar
  13. 13.
    Towe, A. L., Jabbur, S. J.: Cortical inhibition of neurons in the dorsal column nuclei of cats. J. Neurophysiol.24, 488–498 (1961).Google Scholar
  14. 14.
    Winter, D. L.: Nucleus gracilis of cat. Functional organization and corticofugal effects. J. Neurophysiol.28, 48–70 (1965).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • C. Ghez
    • 1
  • G. L. Lenzi
    • 1
  1. 1.Istituto di Fisiologia Umana, Cattedra IIUniversità di PisaPisaItalia

Personalised recommendations