Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of sucrose solution on the longitudinal tissue resistivity of trabecular muscle from mammalian heart

Summary

Trabecular muscle bundles from sheep and calf hearts were exposed to isosmotic sucrose solution in a single sucrose gap arrangement. Inside longitudinal specific resistanceR i , calculated from recordings of the inside and outside action potentials across the gap and the total longitudinal resistance in the mid-interpolar region, increase tenfold from an initial value of 463 Ω cm during 4 h of sucrose perfusion. Upon re-perfusion with Tyrode for 8–10 hR i decreased to 1000 Ω cm. The marked increase ofR i was prevented by addition of 10−4 M CaCl2 to the sucrose solution. The inside and outside action potentials across the gap became distorted whenR i reached high values.

Longitudinal distribution of sodium and potassium in a number of trabeculae was determined with activation analysis. These experiments revealed considerable mixing between sodium and sucrose near the sucrose-Tyrode junction. The longitudinal distribution of potassium suggests that loss of ions from the cells cannot account for the increase ofR i .

This is a preview of subscription content, log in to check access.

References

  1. Barr, L., Dewey, M. M., Berger, W.: Propagation of action potentials and the structure of the nexus in cardiac muscle. J. gen. Physiol.48, 797–823 (1965)

  2. Carmeliet, E. E.: Chloride and potassium permeability in cardiac Purkinje fibres. Bruxelles: Presses Acad. Europ. 1961

  3. Délèze, J.: The recovery of resting potential and input resistance in sheep heart injured by knife or laser. J. Physiol. (Lond.)208, 547–562 (1970)

  4. Giebisch, G., Weidmann, S.: Membrane currents in mammalian ventricular heart muscle fibres using a “voltage clamp” technique. Helv. physiol. pharmacol. Acta25, CR 189 (1967)

  5. Johnson, E. A., Liebermann, M.: Heart: Excitation and contraction. Ann. Rev. Physiol.33, 479–532 (1971)

  6. Jones, A. W., Tomita, T.: The longitudinal tissue resistance of guinea-pig taenia coli. J. Physiol. (Lond.)191, 109–110P (1967)

  7. Loewenstein, W. R., Nakas, M., Socolar, S. J.: Junctional membrane uncoupling. Permeability transformations at a cell membrane junction. J. gen. Physiol.50, 1865–1891 (1967)

  8. Merrem, B., Kuechler, G., Isenberg, G.: Zur Ableitung bioelektrischer Potentiale von einzelnen Skelettmuskelfasern mit der Saccharosetrennwandmethode. Acta biol. med. germ.21, 51–65 (1968)

  9. Morad, M., Orkand, R. K.: Excitation-contraction coupling in frog ventricle: Evidence from voltage clamp studies. J. Physiol. (Lond.)219, 167–189 (1971)

  10. New, W., Trautwein, W.: Inward membrane currents in mammalian myocardium. Pflügers Arch.334, 1–23 (1972)

  11. Page, E.: Cat heart muscle in vitro. III. The extracellular space. J. gen. Physiol.46, 201–213 (1962)

  12. Rougier, O., Vassort, G., Staempfli, R.: Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflügers Arch. ges. Physiol.301, 91–108 (1968)

  13. Sperelakis, N., Hoshiko, T.: Electrical impedance of cardiac muscle. Circulat. Res.9, 1280–1283 (1961)

  14. Staempfli, R.: A new method for measuring membrane potentials with external electrodes. Experientia (Basel)10, 508–509 (1954)

  15. Tomita, T.: The longitudinal tissue impedance of the smooth muscle of guinea-pig taenia coli. J. Physiol. (Lond.)201, 145–159 (1969)

  16. Weidmann, S.: The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J. Physiol. (Lond.)187, 323–342 (1966)

  17. Weidmann, S.: Electrical constants of trabecular muscle from mammalian heart. J. Physiol. (Lond.)210, 1041–1054 (1970)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kléber, A.G. Effects of sucrose solution on the longitudinal tissue resistivity of trabecular muscle from mammalian heart. Pflugers Arch. 345, 195–205 (1973). https://doi.org/10.1007/BF00586334

Download citation

Key words

  • Heart Muscle
  • Longitudinal Resistance
  • Sucrose
  • Calcium
  • Longitudinal Ion Distribution