Pflügers Archiv

, Volume 313, Issue 2, pp 168–185 | Cite as

Scotopic and mesopic light adaptation in the cat's retina

  • Bert Sakmann
  • Otto D. Creutzfeldt
Article

Summary

The effects of light adaptation on retinal on-center ganglion cell firing were measured in the scotopic-mesopic range (10−5–1 cd/m2). Using diffuse adapting stimuli, the maintained discharge rate of all on-center units increases with increasing adapting luminance up to 10−3–10−2 cd/m2. Above this luminance it levels off or decreases. The change of the maintained discharge rate with increasing adapting luminances was related to changes in the receptive field organization of the unit and to changes in retinal sensitivity.

The sensitivity of the retina at the different adapting luminances was measured by determining the luminance ΔI of a test spot which elicited a constant criterion ganglion cell response. ΔI increased with increasing adapting luminance not proportional toIA(Weber's law) but proportional toIAn(n varying between 0.45 and 0.75). Correspondingly, by changing the adaptation level, the intensity: response curve of a ganglion cell for small center stimuli was displaced on the intensity-axis by less than the adapting luminance step. The intensity response-curves at the different adaptation levels were parallel and S-shaped in the semilogarithmic coordinates with a straight course over 1.5 log units. The intensity-response relation for small center stimuli was best fitted by a log-function at all adaptation levels. It is concluded that the ganglion cell itself is not involved in the adaptation mechanism. Adaptation and spatial summation of signals occur at different levels of the retina.

Key-Words

Cat Retina Light Adaptation Stimulus-Response Relation 

Zusammenfassung

Die Auswirkungen der Helladaptation auf das Entladungsverhalten von on-Zentrum Neuronen der Katzenretina wurden im skotopischen und mesopischen Leuchtdichtebereich untersucht (10−5–1 cd/m2). Bei Verwendung diffuserLichtreize steigt die Daueraktivität aller on-Zentrum Neurone mit steigender Adaptationleuchtdichte bis zu Leuchtdichten zwischen 10−3 und 10−2 cd/m2 an. Bei weiterer Erhöhung der Leuchtdichte bleibt die Daueraktivität konstant oder nimmt wieder ab. Der Verlauf der Daueraktivität eines Neurons bei steigender Adaptationsleuchtdichte steht in Zusammenhang mit Veränderungen der receptiven Feldstruktur und der Empfindlichkeit der Retina. Die Empfindlichkeit der Retina wurde bei verschiedenen AdaptationsleuchtdichtenIAdurch die Leuchtdichte ΔI eines Testreizes gemessen, der zu einer konstanten Schwellenreaktion führte. Bei ansteigendemIAnimmt ΔI proportionalIAnzu, wobein zwischen 0,45 und 0,75 liegt. Entsprechend wurde die Reiz-Reaktionskennlinie eines Neurons bei Veränderung des Adaptationszustandes um weniger als die logarithmische Differenz der Adaptationsleuchtdichten auf der Intenistätsachse verschoben. Die Reiz-Reaktionskennlinien eines Neurons bei verschiedenen Adaptationszuständen sind bei halblogarithmischer Auftragung parallel zueinander verschoben. Sie sind S-förmig mit einem geraden Anteil über 1,5 log Einheiten. Bei allen Adaptationszuständen wurden sie am besten durch eine Logarithmus-Funktion beschrieben. Es wird gefolgert, daß Adaptation und räumliche Summation Funktionen verschiedener Schichten der Retina sind und die Ganglienzellen nicht aktiv am Adaptationsmechanismus beteiligt sind.

Schlüsselwörter

Katzenretina Helladaptation Reiz-Reaktionskennlinie 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barlow, H. B.: Increment thresholds at low intensities considered as signal/noise discriminations. J. Physiol. (Lond.)136, 469–488 (1957).Google Scholar
  2. 2.
    —: Optic nerve impulses and Weber's law. Cold Spr. Harb. Symp. quant. Biol.30, 539–546 (1965).Google Scholar
  3. 3.
    —, Fitzhugh, R., Kuffler, S. W.: Change of organization in the receptive fields of the cat's retina during dark adaptation. J. Physiol. (Lond.)137, 338–354 (1957).Google Scholar
  4. 3a.
    —, Levick, W. R.: Changes in the maintained discharge with adaptation level in the cat retina. J. Physiol. (London)202, 699–718 (1969).Google Scholar
  5. 4.
    Baumann, C. H., Scheibner, H.: The dark adaptation of single units in the isolated frog retina. Vision Res.8, 1127–1138 (1968).Google Scholar
  6. 5.
    Blackwell, H. R.: Contrast thresholds of the human eye. J. opt. Soc. Amer.36, 642–643 (1946).Google Scholar
  7. 6.
    Cleland, B. G., Enroth-Cugell, C.: Quantitative aspects of sensitivity and summation in the cat retina. J. Physiol. (Lond.)198, 17–38.Google Scholar
  8. 7.
    Dodt, E., Echte, K.: Dark and light adaptation in pigmented and white rat as measured by electroretinogram threshold. J. Neurophysiol.24, 427–445 (1961).Google Scholar
  9. 8.
    Donner, K. O., Reuter, T.: The dark-adaptation of single units in the frog's retina and its relation to the regeneration of rhodopsin. Vision Res.5, 615–632 (1965).Google Scholar
  10. 9.
    ——: Dark adaptation processes in the rhodopsin rods of the frogs retina. Vision Res.7, 17–41 (1967).Google Scholar
  11. 10.
    ——: Visual adaptation of the rhodopsin rods in the frog's retina. J. Physiol. (Lond.)199, 59–87 (1968).Google Scholar
  12. 11.
    —, Willmer, E. N.: An analysis of the response from single visual-purple-dependent elements in the retina of the cat. J. Physiol. (Lond.)111, 160–173, (1950).Google Scholar
  13. 12.
    Dowling, J. E.: Neural and photochemical mechanism of visual adaptation in the rat. J. gen. Physiol.46, 1287–1301 (1963).Google Scholar
  14. 13.
    —: The site of visual adaptation. Science155, 273–279 (1967).Google Scholar
  15. 14.
    —, Boycott, B. B.: Organization of the primate retina: Electron microscopy. Proc. roy. Soc. B166, 80–111 (1966).Google Scholar
  16. 15.
    Easter, S. S.: Adaptation in the goldfish retina. J. Physiol. (Lond.)195, 271–281 (1968).Google Scholar
  17. 16.
    Fitzhugh, R.: The statistical detection of threshold signals in the retina. J. gen. Physiol.40, 925–948 (1957).Google Scholar
  18. 17.
    Fourtes, M. G. F., Hodgkin, A. L.: Changes in time scale and sensitivity in the ommatidia of lumulus. J. Physiol. (Lond.)172, 239–263 (1964).Google Scholar
  19. 18.
    Furman, G. G.: Comparison of models for substractive and shunting lateral inhibition in receptor-neuron fields. Kybernetik2, 257–274 (1965).Google Scholar
  20. 19.
    Glantz, R. M.: Light adaptation in the photoreceptor of the crayfish, Procambarus clarki. Vision Res.8, 1407–1421 (1968).Google Scholar
  21. 20.
    Grüsser, O. J., Hellner, K. A., Grüßer-Cornehls, U.: Die Informationsübertragung im afferenten visuellen System. Kybernetik1, 175–192 (1962).Google Scholar
  22. 21.
    Hugher, G. W., Maffei, L.: Retinal ganglion-cell response to sinusoidal light stimulation. J. Neurophysiol.29, 333–352 (1966).Google Scholar
  23. 22.
    Kern, E.: Der Bereich der Unterschiedsempfindlichkeit des Auges bei festgehaltenem Adaptationszustand. Z. Biol.105, 237–245 (1953).Google Scholar
  24. 23.
    Kuffler, S. W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol.16, 37–68 (1953).Google Scholar
  25. 24.
    —, Fitzhugh, R., Barlow, H. B.: Maintained activity in the cat's retina in light and darkness. J. gen. Physiol.40, 683–702 (1957).Google Scholar
  26. 25.
    Lipetz, L.: A mechanism of light adaptation. Science133, 639–640 (1961).Google Scholar
  27. 26.
    Polyak, S.: In: The Vertebrate Visual System, p. 886 (Ed. Heinrich Klüver). The University of Chicago Press.Google Scholar
  28. 27.
    Rodieck, R. W.: Maintained activity of cat retinal ganglion cells. J. Neurophysiol.30, 1043–1070 (1967).Google Scholar
  29. 28.
    Rodieck, R. W., Pettigrew, I. D., Bishop, P. O., Nikara, T.: Residual eye movements in receptive field studies of paralyzed cats. Vision Res.7.Google Scholar
  30. 29.
    Rushton, W. A. H.: Dark adaptation and the regeneration of rhodopsin. J. Physiol. (Lond.)156, 166–178 (1961).Google Scholar
  31. 30.
    —: The retinal organization of vision in vertebrates. Symp. Soc. exp. Biol.16, 12–131 (1962).Google Scholar
  32. 31.
    —: The Ferrier lecture: Visual adaptation. Proc. roy. Soc. B162, 20–46 (1965).Google Scholar
  33. 32.
    —: The sensitivity of rods under illumination. J. Physiol. (Lond.)178, 141–160 (1965a).Google Scholar
  34. 33.
    —: Bleached rhodopsin and visual adaptation. J. Physiol. (Lond.)181, 645–655 (1965b).Google Scholar
  35. 34.
    Sakmann, B., Creutzfeldt, O., Scheich, H.: An experimental comparison between the ganglion cell receptive field and the receptive field of the adaptation pool. Pflügers Arch.307, 133–137 (1969).Google Scholar
  36. 34a.
    —: Adaptation von on-center Ganglienzellen der Katzenretina. Pflügers Arch.307, R 146 (1969).Google Scholar
  37. 35.
    Stone, J., Fabian, M.: Summing properties of the cat's retinal ganglion cell. Vision Res.8, 1023–1040 (1968).Google Scholar
  38. 36.
    Straschill, M.: Aktivität von Neuronen im Tractus opticus und Corpus geniculatum laterale bei langdauernden Lichtreizen verschiedener Intensität. Kybernetik3, 1–8 (1966).Google Scholar
  39. 37.
    Weinstein, G. W., Holson, R. R., Dowling, J. E.: Light and dark adaptation in the isolated rat retina. Nature (Lond.)215, 134–138 (1967).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Bert Sakmann
    • 1
  • Otto D. Creutzfeldt
    • 1
  1. 1.Abteilung für NeurophysiologieMax-Planck-Institut für PsychiatrieMünchen

Personalised recommendations