Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Blockade by tetraethylammonium (TEA) and rubidium of potassium exchange in sartorius muscle fibers: Distribution of14C-TEA in muscle

  • 21 Accesses

  • 6 Citations

Summary

Tetraethylammonium (TEA) causes a blockade of42K-exchange in resting sartorius muscle by a mechanism that differs from that caused by rubidium ions. Whereas the blockade by rubidium of42K-efflux was antagonized by elevation of extracellular potassium, that caused by TEA was antagonized only partially. Rubidium-induced blockade has characteristics of competitive inhibition of42K-exchange while the TEA-induced blockade appears to be non-competitive. Moreover, TEA causes a greater blockade of42K-exchange in muscles bathed in hypertonic solutions than in muscles bathed in isotonic solutions. This finding may be related to the more rapid rate of42K-exchange in muscles bathed in hypertonic solutions. The equilibrium constant for the interaction between TEA and membrane receptors estimated during42K-efflux is approximately 20 mM; the equilibrium constant for rubidium ions is 1.4 mM. The14C-TEA space in sartorius muscle is about 2-times greater than the14C-inulin or sodium spaces but somewhat smaller than14C-urea space. The rates of efflux14C-TEA,14C-inulin and14C-urea are comparable and rapid. Thus, the muscle membrane does not appear to offer a barrier to the exchange of TEA.

This is a preview of subscription content, log in to check access.

References

  1. Adrian, R. H.: Movement of inorganic ions across the membrane of striated muscle. Circulation26, 1214–1223 (1962).

  2. —: The rubidium and potassium permeability of frog muscle membrane. J. Physiol. (Lond.)175, 134–159 (1964).

  3. Armstrong, C. M.: Time course of TEA+-induced anomalous rectification in squid giant axons. J. gen. Physiol.50, 491–503 (1966).

  4. —: Interaction of tetraethylammonium ion derivatives with potassium channels of giant axons. J. gen. Physiol.58, 413–437 (1971).

  5. —, Binstock, L.: Anomalous rectification in the squid axon injected with tetraethylammonium chloride. J. gen. Physiol.48, 859–872 (1965).

  6. Freygang, W. H., Goldstein, D. A., Hellam, D. C., Peachey, L. D.: The relation between the late afterpotential and the size of the transverse tubular system of frog muscle. J. gen. Physiol.48, 235–263 (1964).

  7. Glisson, S. N., Henderson, E. C., Volle, R. L.: Tetraethylammonium (TEA) distribution in resting frog skeletal muscle. Proc. V Inter. Cong. Pharmacol. (in press) (1972).

  8. Hagiwara, S., Saito, N.: Coltage-current relations in verve cell membrane ofOnchidium verruculatum. J. Physiol. (Lond.)148, 161–179 (1959).

  9. —, Watanabe, A.: The effect of tetraethylammonium chloride on the muscle membrane examined with an intracellular micro electrode. J. Physiol. (Lond.)129, 513–527 (1955).

  10. Henderson, E. G.: Asymmetric properties of frog sartorius muscle cell membrane deduced from the interactions of rubidium and potassium ions. Doctoral dissertation, University of Maryland, U.S.A., 1966.

  11. Hille, B.: The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J. gen. Physiol.50, 1287–1302 (1967).

  12. Hodgkin, A. L., Katz, B.: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.)108, 513–528 (1949).

  13. Horowicz, P., Gage, P. W., Eisenberg, R. S.: The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle. J. gen. Physiol.51, 193s-203s (1968).

  14. Koppenhöfer, E.: Die Wirkung von Tetraäthylammoniumchlorid auf die Membranströme Ranvierscher Schnürringe vonXenopus laevis. Pflügers Arch. ges. Physiol.293, 34–55 (1967).

  15. —, Vogel, W.: Wirkung von tetrodotoxin und Tetraäthylammoniumchlorid an der Innenseite der Schnürringsmembran vonXenopus laevis. Pflügers Arch.313, 361–380 (1969).

  16. Müller, P.: Potassium and rubidium exchange across the surface membrane of cardiac Purkinje fibers. J. Physiol. (Lond.)177, 453–462 (1965).

  17. Renkin, E. M.: Permeability of frog skeletal muscle cells to choline. J. gen. Physiol.44, 1159–1164 (1961).

  18. Schmidt, H., Stämpfli, R.: Die Wirkung von Tetraäthylammoniumchlorid auf den einzelnen Ranvierschen Schnürring. Pflügers Arch. ges. Physiol.287, 311–325 (1966).

  19. Sjodin, R. A.: Some cation interactions in muscle. J. gen. Physiol.44, 929–962 (1961).

  20. —: The potassium flux ratio in skeletal muscle as a test for independent ion movement. J. gen. Physiol.48, 777–795 (1965).

  21. —, Henderson, E. G.: Tracer and non-tracer potassium fluxes in frog sartorius muscle and the kinetics of net potassium movement. J. gen. Physiol.47, 605 to 638 (1964).

  22. Stanfield, P. R.: The effect of tetraethylammonium ion on the delayed currents of frog skeletal muscle. J. Physiol. (Lond.)209, 209–229 (1970a).

  23. —: The differential effects of tetraethylammonium and zinc ions on the resting conductance of frog skeletal muscle. J. Physiol. (Lond.)209, 231–256 (1970b).

  24. Vierhaus, J., Ulbricht, W.: Rate of action of tetraethylammonium ions on the duration of action potentials in single Ranvier nodes. Pflügers Arch.326, 88–100 (1971).

  25. Volle, R. L.: The actions of tetraethylammonium ions on potassium fluxes in frog sartorius muscle. J. Pharmacol. exp. Ther.172, 230–238 (1970a).

  26. —: Blockade by barium of potassium fluxes in frog sartorius muscle. Life Sci.3, 175–180 (1970b).

  27. —: Blockade by 9-aminoacridine of potassium fluxes in frog sartorius muscle. Biochem. Pharmacol.20, 315–324 (1971).

Download references

Author information

Additional information

Supported by research grant NS-07540-05 and NS-09148-02 from the Institute of Neurological Sciences and Stroke, National Institutes of Health, U.S.P.H.S., Bethesda, Maryland.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Volle, R.L., Glisson, S.N. & Henderson, E.G. Blockade by tetraethylammonium (TEA) and rubidium of potassium exchange in sartorius muscle fibers: Distribution of14C-TEA in muscle. Pflugers Arch. 333, 281–296 (1972). https://doi.org/10.1007/BF00586209

Download citation

Key words

  • Tetraethylammonium
  • Rubidium
  • 42K-Exchange
  • Sartorius Muscle
  • 14C-TEA-Distribution