Pflügers Archiv

, Volume 366, Issue 2–3, pp 273–276 | Cite as

The theoretical small signal impedance of the frog node,Rana pipiens

  • David E. Clapham
  • Louis J. de Felice
Letters and Notes

Summary

The small signal impedance of the frog node is calculated for frequencies from 1 Hz to 10,000 Hz and transmembrane potentials from −80 mV to −30 mV by linearizing the voltage clamp equations of Dodge [7] and Hille [8]. The modulus of the impedance is presented for the total system, and separately for the potassium and sodium systems as a function of frequency and voltage. There is a broad resonance in the total impedance with a voltage-dependent peak frequency. At 22°C, in the range −75 mV to −45 mV, the peak frequencies occur between 50 and 500 Hz. Removing the potassium system leaves a relatively shapr resonance centered around 200 Hz at −45 mV.

Key Words

Frog node Small signal impedance Membrane noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bromm, B.: Spike frequency of the nodal membrane generated by high-frequency alternating current. Pflügers Arch.353, 1–19 (1975).Google Scholar
  2. 2.
    Chandler, W. K., FitzHugh, R. and Cole, K.S.: Theoretical stability properties of a space-clamped axon. Biophys. J.2, 105–127 (1962).Google Scholar
  3. 3.
    Cole, K.S. and Baker R.F.: Longitudinal impedance of the squid giant axon. J. Gen. Physiol.24, 771–788 (1941).Google Scholar
  4. 4.
    Cole, K.S.: Rectification and inductance in the squid giant axon. J. Physiol. (London)25, 29–51 (1941).Google Scholar
  5. 5.
    Conti, F. and Wanke, E.: Channel noise in nerve membranes and lipid bilayers. Quart. Rev. Biophys.8, 451–506 (1975).Google Scholar
  6. 6.
    Dodge, F.A.: Ionic permeability changes underlying nerve excitation. A.A.A.S. (Washington, D.C.) (1961).Google Scholar
  7. 7.
    Dodge, F.A.: A study of ionic permeability changes underlying excitation in myelinated nerve fibres of the frog. Thesis, The Rockefeller University. (Univ. Microfilms, Ann Arbor, Michigan, No. 63-7333) (1963).Google Scholar
  8. 8.
    Hille, B: A pharmacological analysis of the ionic channels of nerve. Thesis, The Rockefeller University. (Univ. Microfilms, Ann Arbor, Michigan, No. 68-9584) (1967).Google Scholar
  9. 9.
    Hille, B.: Voltage clamp studies on myelinated nerve fibres. In: Biophysics and Physiology of Excitable Membrane, W.J. Adelman (ed.) pp. 230–246. New York: Van Nostrand Reinhold Co., 1971.Google Scholar
  10. 10.
    Hodgkin, A.L. and Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London)117, 500–544 (1952).Google Scholar
  11. 11.
    Mauro, A., Conti, F., Dodge, F., Schor, R.: Subthreshold behavior and phenomenological impedance of the squid giant axon. J. Gen. Physiol.55, 497–523 (1970).Google Scholar
  12. 12.
    Siebenga, E., de Goede, J., Verveen, A.A.: The influence of TTX, DNP and TEA on membrane flicker noise and shot-effect noise of the frog node of Ranvier. Pflügers Arch.351, 25–34 (1974).Google Scholar
  13. 13.
    van den Berg, R.J., de Goede, J., Verveen, A.A.: Conductance fluctuations in Ranvier nodes. Pflügers Arch.360, 17–23 (1975).Google Scholar
  14. 14.
    Verveen, A.A., DeFelice, L.J.: Membrane noise. Prog. Biophys. Molec. Biol.28, 189–265 (1974).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • David E. Clapham
    • 2
  • Louis J. de Felice
    • 1
  1. 1.Department of AnatomyEmory UniversityAtlantaUSA
  2. 2.School of Electrical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations