Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Micropuncture and microperfusion study ofl-glucose secretion in rat kidney

  • 18 Accesses

  • 25 Citations


Studies with the free flow micropuncture technique have shown that the ratio of TF/Pl-glucose to TF/PInulin in proximal tubular fluid, in distal tubular fluid, and in more than half of the final urine samples measured was greater than one, which suggests thatl-glucose was actively secreted. Studies with the microperfusion technique confirmed this finding and showed thatl-glucose was secreted by the proximal tubules. A maximum rate of secretion was reached at a plasma concentration of 4 mM. The tubular secretion ofl-glucose was augmented by the presence of 16.6 mMd-glucose in tubular lumen and inhibited by 10−4 M phlorizin. Kinetic analysis showed that theV max values forl-glucose secretion in the absence and in the presence ofd-glucose are 5.0×10−10 and 6.3×10−10 mol×cm−2×sec−1 respectively which were very close to the value reported for theV max ford-glucose reabsorption. However, theK m forl-glucose secretion was 3.1 mM and was reduced to 1.6 mM whend-glucose was present in the perfusion fluid. TheK m ford-glucose reabsorption has been reported to be 0.6 mM (8). The results of this investigation were interpreted as being consistant with the hypothesis thatl-glucose secretion andd-glucose reabsorption share the same carrier system.

This is a preview of subscription content, log in to check access.


  1. 1.

    Brown, M. N., andM. S. Boston: Ultra-micro sugar determinations using 2.9-dimethyl 1.10-phenanthroline HCl (neocuproine). Diabetes10, 60–62 (1962).

  2. 2.

    Dowd, J. E., andD. S. Riggs: A comparison of estimates of Michaelis-Menten Kinetic constants from various linear transformations. J. biol. Chem.240, 863–869 (1965).

  3. 3.

    Frömter, E., u.U. Hegel: Transtubuläre Potentialdifferenzen an proximalen und distalen Tubuli der Rattenniere. Pflügers Arch. ges. Physiol.291, 107–120 (1966).

  4. 4.

    Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.276, 336–356 (1963).

  5. 5.

    Huang, K. C.: Intestinal transport ofl-tyrosine and its derivates. J. Pharmacol. exp. Ther.136, 361–365 (1962).

  6. 6.

    —, andR. L. Woosley: Renal tubular secretion of L-glucose. Amer. J. Physiol.214, 342–347 (1968).

  7. 7.

    LeFevre, P. G., andJ. K. Marshall: Conformational specificity in a biological sugar transport system. Amer. J. Physiol.194, 333–337 (1958).

  8. 8.

    Loeschke, K., u.K. Baumann: Kinetische Studien derd-Glucoseresorption im proximalen Konvolut der Rattenniere. Pflügers Arch.305, 139–154 (1969).

  9. 9.

    ——,H. Renschler u.K. J. Ullrich: Differenzierung zwischen aktiver und passiver Komponente desd-Glucosetransports am proximalen Konvolut der Rattenniere. Pflügers Arch.305, 118–138 (1969).

  10. 10.

    Malnic, G., R. M. Klose, andG. Giebisch: Micropuncture study of renal potassium excretion in the rat. Amer. J. Physiol.206, 674–686 (1964).

  11. 11.

    Nelson, N.: A photometric adaptation of the Somogyi method for the determination of glucose. J. biol. Chem.153, 375–380 (1944).

  12. 12.

    Schmidt, F. H.: Die enzymatischen Bestimmungen von Glucose und Fructose nebeneinander. Klin. Wschr.39, 1244–1247 (1961).

  13. 13.

    Sonnenberg, H., u.P. Deetjen: Methode zur Durchströmung einzelner Nephronabschnitte. Pflügers Arch. ges. Physiol.278, 669–674 (1964).

  14. 14.

    —,H. Oelert, andK. Baumann: Proximal tubular reabsorption of some organic acids in the rat kidney in vivo. Pflügers Arch. ges. Physiol.286, 171–180 (1965).

  15. 15.

    Steinhausen, M.: Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo und ihre Anwendung zur Bestimmung tubulärer Strömungsgeschwindigkeiten. Pflügers Arch. ges. Physiol.277, 23–35 (1963).

  16. 16.

    Ullrich, K. J., u.W. Hampel: Eine einfache Microküvette für Monochromator Zeiss and Beckman Modell DU. Pflügers Arch. ges. Physiol.268, 177–180 (1958).

  17. 17.

    —,B. Schmidt-Nielson, R. O'Dell, G. Pehling, C. W. Gottschalk, W. E. Lassiter, andM. Mylle: Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Amer. J. Physiol.204, 527–531 (1963).

  18. 18.

    Van Liew, J. B., P. Deetjen, andJ. W. Boylan: Glucose reabsorption in the rat kidney. Dependence on glomerular filtration. Pflügers Arch. ges. Physiol.295, 232–244 (1967).

  19. 19.

    Wilson, T. H., andB. R. Laudau: Specificity of sugar transport by the intestine of the hamster. Amer. J. Physiol.198, 99–102 (1960).

  20. 20.

    Windhager, E. E., andG. Giebisch: Micropuncture study of renal tubular transport of sodium chloride in the rat. Amer. J. Physiol.200, 581–590 (1961).

  21. 21.

    Woosley, R., andK. C. Huang: Renal excretion of some isomeric hexoses in the dog. Proc. Soc. exp. Biol. (N.Y.)124, 20–26 (1967).

Download references

Author information

Additional information

A preliminary report was appeared in Fed. Proceeding Vol. 27, No. 2, 1968.

On sabbatical leave from Univ. Louisville, School of Medicine and supported by a NIAMD Special Fellowship (1-F3-AM-32,720-01) and a research grant of USPHS (AMO2217-10).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baumann, K., Huang, K.C. Micropuncture and microperfusion study ofl-glucose secretion in rat kidney. Pflugers Arch. 305, 155–166 (1969). https://doi.org/10.1007/BF00585842

Download citation


  • l-Glucose
  • Micropuncture and Microperfusion
  • Proximal Tubule
  • Active Secretion
  • Kinetic Study


  • l-Glucose
  • Mikropunktion und Mikroperfusion
  • proximaler Tubulus
  • aktive Sekretion
  • kinetische Studien