Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Catecholamines and oxygen uptake in dog skeletal muscle in situ

  • 17 Accesses

  • 14 Citations


The effect of catecholamines on oxygen uptake in dog hind limb skeletal muscle was continuously calculated from arterio-venous O2 saturation difference and blood flow data. Adrenalin and noradrenalin injected or perfused intraarterially or intravenously, always increased oxygen uptake to the same extent. The rise in consumption resulted mainly from an increase in the extraction of oxygen from blood under all hemodynamic conditions. Such an effect was repeatable by multiple short-spaced injections. The results suggest that adrenalin, as well as noradrenalin, actually increase oxygen consumption, independently of their vascular effects.

This is a preview of subscription content, log in to check access.


  1. 1.

    Bolme, P., Gagnon, D. J.: The effects of vasodilatating drugs and vasoconstrictor nerve stimulation on oxygen uptake skeletal muscle. Europ. J. Pharmacol.20, 300–307 (1972)

  2. 2.

    Bolme, P., Novotny, J.: Oxygen uptake in skeletal muscle of the dog during sympathetic vasodilatation. Acta physiol. scand.77, 333–343 (1969)

  3. 3.

    Bücherl, E., Schwab, M.: Der Einfluß von L adrenalin und L arterenol auf den Sauerstoffverbrauch des ruhendern Skeletmuskels. Pflügers Arch. ges. Physiol.254, 327–336 (1952)

  4. 4.

    Depocas, F.: Chemical thermogenesis in the functionnally eviscerated acclimated rat. Canad. J. Biochem. Physiol.36, 691 (1958)

  5. 5.

    Dill, D. B., Edwards, H. T., Florkin, M., Compbell, R. W.: Properties of the dog blood. J. biol. Chem.95, 143–152 (1932)

  6. 6.

    Drabkin, D. L., Austin, J. H.: A technique for the analysis of undiluted blood and concentrated hemoglobin solutions. J. biol. Chem.129, 739–757 (1939)

  7. 7.

    Green, H. D., Lewis, R. N., Nickerson, N. D., Heller, A. C.: Blood flow peripheral resistance and vascular tonus with observations on relationship between bloodflow and cutaneous temperature. Amer. J. Physiol.141, 518–536 (1944)

  8. 8.

    Griffith, F. R., Omachi, A., Lockwood, J. E., Loomis, T. A.: The effect of intravenous adrenalin on bloodflow, sugar retention, lactate output and respiratory metabolism of peripheral (leg) tissues in the anesthetized cat. Amer. J. Physiol.149, 64–76 (1947)

  9. 9.

    Issekutz, B., Jr., Lichtneckert, I., Hetenyi, G., Jr.: Effect of adrenalin on the oxygen consumption of muscle. Arch. int. Pharmacodyn.84, 317–327 (1950)

  10. 10.

    Jansky, L.: Body organ thermogenesis of the rat during exposure to cold and at maximal metabolic rate. Fed. Proc.25, 1297–1302 (1966).

  11. 11.

    Kleinsorg, H., Schmier, J.: Über die arteriovenöse O2 Differenz bei verschiedenen neural und humoral bedingten Mehrdurchblutungen. Pflügers Arch. ges. Physiol.254, 441–446 (1952)

  12. 12.

    Lundholm, L.: The effect of adrenalin on the consumption of resting animals. Acta physiol. scand.67, Suppl.1 (1949)

  13. 13.

    Margaria, R. A.: A mathematical treatment of the blood dissociation curve of oxygen. Clin. Chem.9, 745–762 (1963)

  14. 14.

    Morin, G.: L'adrénaline, hormone du froid. Biol. méd.37, 196–230 (1948)

  15. 15.

    Opitz, E.: Registrierung des Herzzeitvolumens beim Hund nach dem Fickschen Prinzip. Pflügers Arch. ges. Physiol.250, 56–78 (1948)

  16. 16.

    Pappenheimer, J. R.: Blood flow, arterial oxygen saturation and oxygen consumption in the isolated perfused hindlimbs of the dog. J. Physiol. (Lond.)99, 283–303 (1941)

  17. 17.

    Powell, W. J., Skinner, N. S., Jr.: Influence of catecholamines on vascular resistance and venouspO2 of skeletal muscle. Arch. int. Pharmacodyn.173, 144–153 (1968)

  18. 18.

    Prusiner, S. B., Cannon, B., Linberg, O.: Oxidative metabolism in cells isolated from brown adipose tissue. 1 — Catecholamines and fatty acid stimulation of respiration. Europ. J. Biochem.6, 15–22 (1968b)

  19. 19.

    Rein, H., Schneider, M.: Die Auswirkung künstlicher Mangeldurchblutung auf den lokalen Stoffwechsel. Pflügers Arch.239, 451–463 (1938).

  20. 20.

    Renkin, E. M., Rosell, S.: The influence of sympathetic adrenergic vasoconstrictor nerves on transport of diffusible solutes from blood to tissues in skeletal muscle. Acta physiol. scand.54, 223 (1962)

  21. 21.

    Rosell, S., Uvnäs, B.: Vasomotor nerve activity on oxygen uptake in skeletal muscle of the anesthetized cat. Acta physiol. scand.54, 209–222 (1962)

  22. 22.

    Rutishauser, W.: Die Abhängigkeit der arteriovenösen Sauerstoffdifferenz und des Sauerstoffverbrauchs der Hinterextremität des Kaninchens von der Durchströmungsgröße und der Wirkung gefäßverengender Pharmaka. Arch. int. Pharmamacodyn.123, 377–394 (1960)

  23. 23.

    Stainsby, W. N., Otis, A. B.: Blood flow, blood oxygen tension, oxygen uptake and oxygen transport on skeletal muscle. Amer. J. Physiol.206, 858–866 (1964)

  24. 24.

    Van Slyke, D. D., Neill, J. M.: The determination of gases in blood and other solutions by vacuum extraction and manometric measurement. J. biol. Chem.61, 523–573 (1924)

  25. 25.

    Waelen, M. J., Sonneville, P. F., Ariens, E. J., Simonis, A. M.: The pharmacology of catecholamines and their derivatives. II — An analysis of the actions on blood flow and oxygen exchange in skin and muscle. Arzneimittel-Forsch.14, 11–19 (1964)

  26. 26.

    Whalen, W. J., Nair, P.: IntracellularpO2 and its regulation in resting skeletal muscle of the guinea pig. Circulat. Res.21, 251–261 (1967)

  27. 27.

    Wood, E. H.: Oxymetry in Medical Physics, vol. 3, pp. 416–445, Otto Glaser ed. (1960)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmitt, M., Meunier, P., Rochas, A. et al. Catecholamines and oxygen uptake in dog skeletal muscle in situ. Pflugers Arch. 345, 145–158 (1973). https://doi.org/10.1007/BF00585837

Download citation

Key words

  • Skeletal Muscle
  • Oxygen Consumption
  • Catecholamines
  • Blood Flow
  • Oxygen Extraction