Advertisement

Journal of Materials Science

, Volume 20, Issue 3, pp 1069–1078 | Cite as

Hollow glass microsphere composites: preparation and properties

  • H. Verweij
  • G. De With
  • D. Veeneman
Papers

Abstract

Composites consisting of bonded hollow glass microspheres are promising for constructions in which materials are needed that combine a high Young's modulus with a low density. The elastic properties of ideally bonded hollow glass microsphere composites are predicted theoretically. Heat-treated castings of quartz glass microspheres approach the theoretical Young's modulus from below. The best result achieved was a Young's modulus of about 1 GPa with a strength of about 0.8 MPa at a density of about 180 kg m−3. This was obtained with a casting of quartz glass microspheres, bonded with mono-aluminium phosphate. Composites made by pressing of appropriate microsphere/ binder mixtures, followed by heating, had a density that was lower than for castings but had a Young's modulus far below the theoretical value.

Keywords

Polymer Phosphate Quartz Elastic Property Quartz Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Morgan, J. L. Wood andR. C. Bradt,Mater. Sci. Eng. 47 (1981) 37.Google Scholar
  2. 2.
    H. E. Exner, “Grundlagen von Sintervorgänge” (Gebr. Bornträager, Berlin, 1978).Google Scholar
  3. 3.
    R. W. Rice, in “Treatise on Materials Science and Technology”, vol. 11, “Properties and Microstructure” (Academic Press, Inc, New York, 1977) pp. 199–381.Google Scholar
  4. 4.
    Idem, J. Amer. Ceram. Soc. 59 (1976) 536.Google Scholar
  5. 5.
    R. M. Christensen, “Mechanics of Composite Materials” (John Wiley & Sons, New York, 1979).Google Scholar
  6. 6.
    J. R. Willis, in “Mechanics of Solids”, edited by H. G. Hopkins and M. J. Sewell (Pergamon, Oxford, 1982) p. 653.Google Scholar
  7. 7.
    S. Spinner,J. Amer. Ceram. Soc. 45 (1962) 394.Google Scholar
  8. 8.
    H. Scholze, “Glass” (Springer Verlag, Berlin, 1977).Google Scholar
  9. 9.
    B. Ryan andB. Tardy, in “Handbook of Fillers and Reinforcements for Plastics”, edited by H. S. Katz and J. V. Milewski (van Nostrand Reinhold, New York, 1978) pp. 317–30.Google Scholar
  10. 10.
    V. Köhne andW. Peek, “Spechsaal für Keramik. Glas. Email. Silikate”100 (1967) 830.Google Scholar
  11. 11.
    Idem, ibid. 101 (1968) 507.Google Scholar
  12. 12.
    W. D. Kingery,J. Amer. Ceram. Soc. 33 (1950) 239.Google Scholar
  13. 13.
    Idem, ibid. 35 (1952) 61.Google Scholar
  14. 14.
    J. E. Cassidy,Ceram. Bull. 56 (1977) 640.Google Scholar
  15. 15.
    M. J. O'hara, J. D. Duga andH. D. Sheets,ibid. 51 (1972) 590.Google Scholar
  16. 16.
    J. H. Morris, P. G. Perkins, A. E. A. Rose andW. E. Smith,J. Appl. Chem. Biotechnol. 28 (1978) 756.Google Scholar
  17. 17.
    S. Timoshenko, “Strength of Materials”, 3rd edn (van Nostrand Rheinhold Princeton, NJ 1955).Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • H. Verweij
    • 1
  • G. De With
    • 1
  • D. Veeneman
    • 1
  1. 1.Philips Research LaboratoriesJA EindhovenThe Netherlands

Personalised recommendations