Pflügers Archiv

, Volume 343, Issue 2, pp 143–150 | Cite as

Skeletal muscle: Dependence of potassium contractures on extracellular calcium

  • E. Stefani
  • D. J. Chiarandini
Article

Summary

The effects of “Ca-free” salines were tested in frog skeletal muscle fibres. It was found that the decrease of the (Ca) in the saline from 1.8 mM to about 3.2×10−10 M (with 4 mM Mg present) did not change the resting potential of the fibres and the depolarizations induced by 40 and 80 mM K. The action potentials, however, were significantly reduced in amplitude and duration by 24% and 33% respectively. K contractures induced with a 117 mM KCl saline had a peak and a slow component. The exposure of the fibres to a “Ca-free” saline [(Ca)ca. 1.6×10−9M] for 40 sec reduced the slow component to 39±16.5% (mean±s.e; 6 fibres) of the control value. The peak component, on the other hand, was slightly decreased to 78±10.5%. These effects were reversible.

The inhibition of the K contractures by extremely low (Ca)o cannot be explained by an alteration of the electrical properties of the muscle fibres or by a depletion of the Ca content of the sarcoplasmic reticulum. It is postulated that the drastic removal of external Ca reduces the driving force for a Ca influx that may take place during the excitation of the muscle and that may be essential for the excitation-contraction coupling.

Key words

Skeletal Muscle Excitation-Contraction Coupling “Ca-Free” Media Resting Potential K Contractures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adrian, R. H., Chandler, W. K., Hodgkin, A. L.: The kinetics of mechanical activation in frog muscle. J. Physiol. (Lond.)204, 207–230 (1969)Google Scholar
  2. 2.
    Armstrong, C. M., Bezanilla, F. M., Horowicz, P.: Twitches in the presence of ethylene glycol bis (β-aminoethyl ether) N,N′-tetraacetic acid. Biochim. biophys. Acta (Amst.)267, 605–608 (1972)Google Scholar
  3. 3.
    Bailey, K.: Myosin and adenosine triphosphatase. Biochem. J.36, 121–239 (1942)Google Scholar
  4. 4.
    Bianchi, C. P., Shanes, A.: Calcium influx in skeletal muscle at rest. J. gen. Physiol.42, 803–815 (1959)Google Scholar
  5. 5.
    Caputo, C., Gimenez, M.: Effects of external calcium deprivation on single muscle fibers. J. gen. Physiol.50, 2177–2195 (1967)Google Scholar
  6. 6.
    Chiarandini, D. J., Stefani, E.: Effects of manganese on the electrical and mechanical properties of frog skeletal muscle fibres. J. Physiol. (Lond.)232, 129–147Google Scholar
  7. 7.
    Costantin, L. L.: Biphasic potassium contractures in frog muscle fibers. J. gen. Physiol.58, 117–130 (1971)Google Scholar
  8. 8.
    Curtis, B. A.: Calcium efflux from frog twitch muscle fibers. J. gen. Physiol.55, 243–253 (1970)Google Scholar
  9. 9.
    Ebashi, S., Endo, M.: Calcium ions and muscle contraction. Prog. Biophys. molec. Biol.18, 123–183 (1968)Google Scholar
  10. 10.
    Edman, K. A. P., Grieve, D. W.: On the role of calcium in the excitation-contraction process of frog sartorius muscle. J. Physiol. (Lond.)170, 138–152 (1964)Google Scholar
  11. 11.
    Endo, M., Tanaka, M., Ogawa, Y.: Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature (Lond.)228, 34–36 (1970)Google Scholar
  12. 12.
    Ford, L. E., Podolsky, R. J.: Regenerative calcium release within muscle cells. Scince167, 58–59 (1970)Google Scholar
  13. 13.
    Ford, L. E., Podolsky, R. J.: Intracellular calcium movements in skinned muscle fibres. J. Physiol. (Lond.)223, 21–33 (1972)Google Scholar
  14. 14.
    Frank, G. B.: Utilization of bound calcium in the action of caffeine and certain multivalent cations on skeletal muscle. J. Physiol. (Lond.)163, 254–268 (1962)Google Scholar
  15. 15.
    Frankenhaeuser, B.: The effect of calcium on the myelinated nerve fibre. J. Physiol. (Lond.)137, 245–260 (1957).Google Scholar
  16. 16.
    Heilbrun, L. V., Wiercinski, F. J. L.: The action of various cations on muscle protoplasm. J. cell. comp. Physiol.29, 15–32 (1947)Google Scholar
  17. 17.
    Hellam, D. C., Podolsky, R. J.: Force measurements in skinned muscle fibres. J. Physiol. (Lond.)200, 807–819 (1969)Google Scholar
  18. 18.
    Hurlbut, W. P., Longenecker, H. B., Jr., Mauro, A.: Effects of calcium and magnesium on the frequency of miniature end-plate potentials during prolonged tetanization. J. Physiol. (Lond.)219, 17–38 (1971)Google Scholar
  19. 19.
    Jenden, D. J., Reger, J. F.: The role of resting potential changes in the contractile failure of frog sartorius muscles during calcium deprivation. J. Physiol. (Lond.)169, 889–901 (1963)Google Scholar
  20. 20.
    Lachman, H., Sorenson, A. L.: Personal communication, letter of January 4, 1973Google Scholar
  21. 21.
    Lüttgau, H. C.: The action of calcium on potassium contractures of single muscle fibres. J. Physiol. (Lond.)168, 679–697 (1963)Google Scholar
  22. 22.
    McLaughlin, S. G. A., Szabo, G., Eisenman, G.: Divalent ions and the surface potential of charged phospholipid membranes. J. gen. Physiol.58, 667–687 (1971)Google Scholar
  23. 23.
    Miledi, R., Thies, R.: Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low-calcium solutions. J. Physiol. (Lond.)212, 245–257 (1971)Google Scholar
  24. 24.
    Milligan, J. V.: The time course of the loss and recovery of contracture ability in frog striated muscle following exposure to Ca-free solutions. J. gen. Physiol.48, 841–858 (1965)Google Scholar
  25. 25.
    Portzehl, H., Caldwell, P. C., Ruegg, J. C.: The dependence of contraction and relaxation of muscle fibres from the crabMaia squinado on the internal concentration of free calcium ions. Biochim. biophys. Acta (Amst.)79, 581–591 (1964)Google Scholar
  26. 26.
    Reuben, J. P., Brandt, P. W., Katz, G. M., Grundfest, H.: Augmentation of responses to calcium injections by agents that reduce calcium sequestration. J. gen. Physiol.55, 140 (1970)Google Scholar
  27. 27.
    Sandow, A.: Excitation-contraction coupling in skeletal muscle. Pharmacol. Rev.17, 265–320 (1965)Google Scholar
  28. 28.
    Sandow, A., Taylor, S. R., Preiser, H.: Role of the action potential in excitation-contraction coupling. Fed. Proc.24, 1116–1123 (1965)Google Scholar
  29. 29.
    Suarez-Kurtz, G., Reuben, J. P., Brandt, P. W., Grundfest, H.: Membrane calcium activation in excitation-contraction coupling. J. gen. Physiol.59, 676–688 (1972)Google Scholar
  30. 30.
    Winegrad, S.: The intracellular site of calcium activation of contraction in frog skeletal muscle. J. gen. Physiol.55, 77–88 (1970)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • E. Stefani
    • 1
  • D. J. Chiarandini
    • 1
  1. 1.Instituto de Anatomía General y Embriología Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Department of OphthalmologyNew York University Medical CenterNew YorkU.S.A.

Personalised recommendations