Journal of Materials Science

, Volume 25, Issue 2, pp 1347–1352 | Cite as

Fracture toughness and hardness of zinc sulphide as a function of grain size

  • D. Townsend
  • J. E. Field


The erosion properties of brittle materials depend upon plastic deformation and crack generation at an impact or indented site. Vickers indentations have been used to investigate the plastic processes and crack systems in chemical vapour deposited zinc sulphide of different grain sizes. The hardness,H, and the “local” fracture toughnessKc, are dependent upon the grain size of the material. For small grain size material (<50 Μm) the Vickers hardness was found to increase with decreasing grain size in accord with the Petch mechanism, i.e.H=H0 +kd−1/2 wherek andH0 are constants andd is the grain diameter. A maximum hardness of ca. 4 GPa has been observed for material with an average 0.5 Μm grain diameter. In large grain size material, hardness anisotropy within the grains causes significant experimental scatter in the hardness measurements because the plastic impression formed by the indenter (load 10 N and 100 N) is smaller than the grain diameter. The values ofKc obtained using an indentation technique show that for grain sizes less than 8 ΜmKc decreases with decreasing grain size. For materials with a grain size in the range 500 Μm to 8 Μm, well developed median cracks were not observed, however, the radius of the fracture zone was measured in order to estimate an “effective”Kc. The “effective”Kc was found to increase approximately linearly with the reciprocal root of the grain size. Consideration of the models for elastic/plastic impact and micromechanics of crack nucleation in conjuction with the variation ofKc andH, indicate that zinc sulphide with a mean grain size of 8 Μm will give the optimum solid particle and rain erosion resistance.


Fracture Toughness Brittle Material Erosion Resistance Zinc Sulphide Size Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. R. Lawn andM. V. Swain,J. Mater. Sci. 10 (1975) 113.CrossRefGoogle Scholar
  2. 2.
    J. T. Hagan andM. V. Swain,J. Phys. D: Appl. Phys. 11 (1978) 2091.CrossRefGoogle Scholar
  3. 3.
    A. G. Evans, M. E. Guilden andM. E. Rosen-Blatt,Proc. R. Soc. A361 (1978) 343.CrossRefGoogle Scholar
  4. 4.
    B. R. Lawn andD. B. Marshall, “Fracture Mechanics of Ceramics” Vol. 3, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) 205.Google Scholar
  5. 5.
    J. T. Hagan,J. Mater. Sci. 14 (1979) 2975.CrossRefGoogle Scholar
  6. 6.
    Idem, ibid. 15 (1980) 1417.CrossRefGoogle Scholar
  7. 7.
    B. R. Lawn andA. G. Evans,ibid 12 (1977) 2975.Google Scholar
  8. 8.
    S. Van Der Zwaag, J. T. Hagan andJ. E. Field,ibid. 15 (1980) 2965.CrossRefGoogle Scholar
  9. 9.
    J. A. Savage, “Infrared Optical Materials and their Anti-reflection Coatings” (Adam Hilger, Bristol, 1985) 95.Google Scholar
  10. 10.
    T. O. Mulhearn,J. Mech. Phys. Sol. 7 (1959) 85.CrossRefGoogle Scholar
  11. 11.
    A. Nadai, “Plasticity” (McGraw-Hill, New York, 1931).Google Scholar
  12. 12.
    R. W. Rice, “Treatise on Materials Science and Technology”, Vol. II, edited by R. K. MacCrone (Academic, New York, 1977) p. 199.Google Scholar
  13. 13.
    S. S. Smith andB. J. Pletka, “Fracture Mechanics of Ceramics”, Vol. 6, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) 189.Google Scholar
  14. 14.
    E. Lendray andW. V. Fock,J. Mater. Sci. 4 (1969) 747.CrossRefGoogle Scholar
  15. 15.
    G. R. Antis, P. Chantikul, B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 64 (1981) 533.CrossRefGoogle Scholar
  16. 16.
    A. G. Evans, “Fracture Mechanics Applied to Brittle Materials” ASTM STP 678, edited by S. W. Frieman (1979) 112.Google Scholar
  17. 17.
    B. R. Lawn andE. R. Fuller,J. Mater. Sci. 10 (1975) 2016.CrossRefGoogle Scholar
  18. 18.
    A. G. Evans andE. A. Charles,J. Amer. Ceram. Soc. 59 (1976) 371.CrossRefGoogle Scholar
  19. 19.
    B. R. Lawn, A. G. Evans andD. B. Marshall,J. Amer. Ceram. Soc. 63 (1980) 574.CrossRefGoogle Scholar
  20. 20.
    R. W. Rice, “The Science of Ceramic Machining and Surface Finishing” Vol. 2 (National Bureau of Standards Special Publication 562 1979) 429.Google Scholar
  21. 21.
    A. W. Ruff andS. M. Wiederhorn, “Treatise on Materials Science and Technology” (Academic. New York)16 (1979) 69.Google Scholar
  22. 22.
    S. M. Wiederhorn andB. J. Hockey,J. Mater. Sci. 18 (1983) 766.CrossRefGoogle Scholar
  23. 23.
    A. G. Evans, Y. M. Ito andM. Rosenblatt,J. Appl. Phys. 51 (1980) 2473.CrossRefGoogle Scholar
  24. 24.
    S. Van Der Zwaag andJ. E. Field,J. Mater. Sci. 17 (1982) 2625.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • D. Townsend
    • 1
  • J. E. Field
    • 1
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations