Advertisement

Journal of Materials Science

, Volume 25, Issue 2, pp 1169–1183 | Cite as

Low-temperature synthesis and processing of electronic materials in the BaO-TiO2 system

  • Pradeep P. Phule
  • Subhash H. Risbud
Review

Abstract

The BaO-TiO2 system contains several technologically important electronic materials. BaTiO3, a ceramic with high dielectric constant, is useful for the manufacture of multilayer ceramic capacitors, thermistors and electro-optic components. Titania rich compounds in this system (such as BaTi4O9 and Ba2Ti9O20) are suitable for the manufacture of miniaturized microwave resonators. Conventional processing of these ceramics relies on the solid-state reactions between readily available raw materials (typically TiO2 and BaCO3) and tends to produce coarse, impure, inhomogeneous and multiphase powders. Low temperature, wet chemical routes offer an exciting possibility for the synthesis of high purity, homogeneous, ultrafine and multicomponent powders from which electronic components with tailored and predictable properties could be prepared. A review of new and emerging techniques for the low temperature, wet chemical synthesis of barium titanates is presented. Salient features of several of these processes based on the use of alkoxides, acetates, citrates, chlorides, hydroxides and oxalates of barium and titanium, and combinations thereof, are described. The reaction pathways for the formation of barium titanates are discussed. A comparative summary of the powder characteristics and electrical properties of the barium titanates obtained by different techniques is presented along with a brief discussion of the economic viability of these processes.

Keywords

BaTiO3 Barium Titanate BaCO3 Material Research Society Titanium Isopropoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Advanced Ceramic Materials: Technological and Economic Assessment” (Noyes, Park Ridge, New Jersey, 1985).Google Scholar
  2. 2.
    K. Kirby, personal communication.Google Scholar
  3. 3.
    J. J. Ritter, R. S. Roth andJ. E. Blendell,J. Amer. Ceram. Soc. 69 (1986) 155.CrossRefGoogle Scholar
  4. 4.
    J. M. Millet, R. S. Roth andH. S. Parker,ibid. 69 (1986) 811.CrossRefGoogle Scholar
  5. 5.
    A. Beauger, J. C. Mutin andJ. C. Niepce,J. Mater. Sci. 18 (1983) 304.CrossRefGoogle Scholar
  6. 6.
    B. Jaffe, W. R. Cook andH. Jaffe, “Piezoelectric Ceramics” (Academic Press, New York, 1971).Google Scholar
  7. 7.
    L. K. Templeton andJ. A. Pask,J. Amer. Ceram. Soc. 42 (1959) 212.CrossRefGoogle Scholar
  8. 8.
    H. Tagwa andJ. Ohashi,Denki Kagaku Ky Okai, Showa 52 (8) (1984) 485.Google Scholar
  9. 9.
    J. C. Mutin andJ. C. Niepce,J. Mater. Sci. Lett. 2 (1984) 1591.Google Scholar
  10. 10.
    S. G. Mhaisalkar, M. Sc. thesis, Ohio State University, Ohio, 1987.Google Scholar
  11. 11.
    S. Nishigaki et al. J. Amer. Ceram. Soc. 71 (1988) C-11.CrossRefGoogle Scholar
  12. 12.
    S. Nomura, K. Tomaya andK. Kaneta,Jpn J. Appl. Phys. 22 (1983) 1125.CrossRefGoogle Scholar
  13. 13.
    T. R. N. Kutty andP. Murugaraj,J. Mater. Sci. Lett. 7 (1988) 601.CrossRefGoogle Scholar
  14. 14.
    P. P. Phule andS. H. Risbud,Adv. Ceram. Mater. 3 (1988) 183.CrossRefGoogle Scholar
  15. 15.
    P. P. Phule, S. Raghavan andS. H. Risbud,J. Amer. Ceram. Soc. 70 (1987) C-108.CrossRefGoogle Scholar
  16. 16.
    P. P. Phule andS. H. Risbud,Mater. Sci. Engg. B3 (1989) 241.CrossRefGoogle Scholar
  17. 17.
    P. P. Phule andS. H. Risbud in “Better Ceramics Through Chemistry” Vol. 3, edited by C. J. Brinker, D. R. Clark and D. R. Ulrich (Materials Research Society, Pittsburgh, 1988) p. 275.Google Scholar
  18. 18.
    G. Tomandl, H. Rosch andA. Steigelschmitt,ibidin “, p. 281.Google Scholar
  19. 19.
    N. D. S. Mohallem andM. A. Aegerter,ibidin “, p. 515.Google Scholar
  20. 20.
    K. W. Kirby,Mater. Res. Bull. 23 (1988) 881.CrossRefGoogle Scholar
  21. 21.
    J. M. Wilson, D. L. Coller andS. Venkataramani, US patent 4670243, June (1987).Google Scholar
  22. 22.
    K. S. Mazdiyasni andL. M. Brown,J. Amer. Ceram. Soc. 55 (1972) 633.CrossRefGoogle Scholar
  23. 23.
    K. S. Mazdiyasni, R. T. Dolloff andJ. S. Smith II,ibid. 52 (1969) 523.CrossRefGoogle Scholar
  24. 24.
    K. S. Mazdiyasni,Amer. Ceram. Soc. Bull. 63 (1984) 591.Google Scholar
  25. 25.
    K. S. Mazdiyasni et al., US patent 3647364, March (1972).Google Scholar
  26. 26.
    J. C. Bernier,Powder Metall. Int. 18 (1986) 164.Google Scholar
  27. 27.
    J. C. Bernier el al. “High Tech Ceramics, Part B”, Materials Science Monograph 38B, edited by P. Vincenzini (Elsevier, Amsterdam, 1987) p. 1443.Google Scholar
  28. 28.
    J. L. Rehspringer, P. Poix andJ. C. Bernier,J. Non. Cry st. Solids 82 (1986) 286.CrossRefGoogle Scholar
  29. 29.
    J. L. Rehspringer andJ. C. Bernier,Mater. Res. Soc. Symp. 72 (1986) 67.CrossRefGoogle Scholar
  30. 30.
    J. L. Rehspringer et al., J. Phys. Colloq. C1 (1986) 243.Google Scholar
  31. 31.
    F. Chaput andJ. P. Boilot, “High Tech Ceramics, Part B”, Materials Science Monograph 38B, edited by P. Vincenzini (Elsevier, Amsterdam, 1987) p. 1459.Google Scholar
  32. 32.
    T. Kasai, Y. Ozaki andS. Yamamoto,Yogyo Kyokaishi 95 (1987) 1000.CrossRefGoogle Scholar
  33. 33.
    T. Kasai andY. Ozaki,ibid. 95 (1987) 912.CrossRefGoogle Scholar
  34. 34.
    Y. Ozaki,Ferroelectrics 49 (1983) 285.CrossRefGoogle Scholar
  35. 35.
    Y. Ozaki andY. Shinohara, Japanese patent JP 62265118A2 [87/265118] November (1987).Google Scholar
  36. 36.
    Y. Ozaki, Japanese patent JP 5782119A2 [82/82119] May (1982).Google Scholar
  37. 37.
    T. Kikuchi andT. Saito, Japanese patent JP 61 21916 A2 [86/21916] January (1986).Google Scholar
  38. 38.
    G. Datta, H. S. Maiti andA. Paul in “High Tech Ceramics Part B”, Materials Science Monograph 38B, edited by P. Vincenzini (Elsevier, Amsterdam, 1987) p. 1469.Google Scholar
  39. 39.
    Idem, J. Mater. Sci. Lett. 6 (1987) 787.CrossRefGoogle Scholar
  40. 40.
    S. Doeuff et al. J. Non. Cryst. Solids 89 (1987) 206.CrossRefGoogle Scholar
  41. 41.
    A. Mosset, I. G. Luneau andJ. Galy,ibid. 100 (1988) 339.CrossRefGoogle Scholar
  42. 42.
    M. Prassas,et al. in “Ultrastructure Processing of Advanced Structural and Electronic Materials”, edited by L. L. Hench (Noyes Publications, New Jersey, 1984) p. 85.Google Scholar
  43. 43.
    D. R. Ulrich, PhD thesis cited in “Inorganic Glass-Forming Systems” edited by H. Rawson (Academic Press, New York, 1967) p. 202.Google Scholar
  44. 44.
    J. D. MacKenzie in “Ultrastructure Processing of Advanced Ceramic Materials” edited by J. D. MacKenzie and D. R. Ulrich (Wiley, New York 1988) p. 589.Google Scholar
  45. 45.
    P. P. Phule, P. A. Deymier andS. H. Risbud, to be published.Google Scholar
  46. 46.
    Y. Enomoto andA. Yamaji,Amer. Ceram. Soc. Bull. 60 (1981) 566.Google Scholar
  47. 47.
    S. S. Flaschen,J. Amer. Chem. Soc. 77 (1955) 6194.CrossRefGoogle Scholar
  48. 48.
    K. Kiss et al., J. Amer. Ceram. Soc. 49 (1966) 291.CrossRefGoogle Scholar
  49. 49.
    F. Chaput andJ. F. Boilot,J. Mater. Sci. Lett. 6 (1987) 1110.CrossRefGoogle Scholar
  50. 50.
    H. Yamamura el al., Nippon Kagaku Kaishi. 7 (1974) 1155.CrossRefGoogle Scholar
  51. 51.
    S. Uedaira,et al., European patent application EP 104002 Al, March (1984).Google Scholar
  52. 52.
    Japanese patent JP 59 39726 A2 [84/39726] March (1984).Google Scholar
  53. 53.
    K. H. Lee, B. H. Lee andH. S. Lee,Yoop Hakhoechi 21 (1984) 323.Google Scholar
  54. 54.
    K. Akira et al. Japanese patent JP 6191016A2 [86/91016] May (1986).Google Scholar
  55. 55.
    M. Pechini, US patent 3330697, July (1967).Google Scholar
  56. 56.
    H. Yamamura et al., Ceram. Int. 11 (1985) 17.CrossRefGoogle Scholar
  57. 57.
    J. M. Bind et al., J. Metals. 39 (1987) 60.Google Scholar
  58. 58.
    P. K. Gallagher andF. Schrey,J. Amer. Ceram. Soc. 46 (1963) 567.CrossRefGoogle Scholar
  59. 59.
    V. Balek andE. Kaiserberger,Thermochim. Acta. 85 (1985) 207.CrossRefGoogle Scholar
  60. 60.
    W. S. Claubaugh, E. M. Swiggard andR. Gilchrist,J. Res. Nat. Bur. Std. 56 (1956) 289.CrossRefGoogle Scholar
  61. 61.
    Y. H. Kim, J. Lee andH. I. Han,Yoop Hakhoechi 23 (1986) 11.Google Scholar
  62. 62.
    N. G. Eror andH. U. Anderson in “Better Ceramics Through Chemistry” Vol 2 (Materials Research Society, Pittsburgh, 1986) p. 571.Google Scholar
  63. 63.
    A. N. Virkar, K. Bandyopadhyay andA. Paul,Trans. Ind. Ceram. Soc. 44 (1985) 78.CrossRefGoogle Scholar
  64. 64.
    M. N. Swilam andA. M. Gadalla,Trans. J. Brit. Ceram. Soc. 74 (1975) 159.Google Scholar
  65. 65.
    B. J. Mulder,Ceram. Bull. 49 (1970) 990.Google Scholar
  66. 66.
    H. Salez, P. Odier andB. Cales,J. Non. Cryst. Solids 82 (1986) 314.CrossRefGoogle Scholar
  67. 67.
    H. Salez, B. Cales andP. Odier,Mater. Sci. Monogr. (High Tech. Ceram.) 38A (1987) 491.Google Scholar
  68. 68.
    D. Hennings andW. Mayr,J. Solid State Chem. 26 (1978) 329.CrossRefGoogle Scholar
  69. 69.
    A. N. Christensen,Acta Chem. Scand. 24 (1970) 2447.CrossRefGoogle Scholar
  70. 70.
    S. Kaneko andF. Imoto,Nippon Kagaku Kaishi 6 (1975) 985.CrossRefGoogle Scholar
  71. 71.
    T. R. N. Kutty andR. Balachandran,Mater. Res. Bull. 19 (1984) 1479.CrossRefGoogle Scholar
  72. 72.
    P. Murugaraj andT. R. N. Kutty,ibid. 20 (1985) 1473.Google Scholar
  73. 73.
    R. Vivekanadan, S. Philip andT. R. N. Kutty,ibid. 22 (1986) 99.Google Scholar
  74. 74.
    H. Okada, H. Matsubayashi andF. Goto, Japanese patent JP 62 72525 A2 [87/72425] March (1987).Google Scholar
  75. 75.
    K. Matsuoka, S. Sakuragi andJ. Yamazaki,Rep. Res. Lab. Hydrotherm. Chem. (Kochi, Jpn) 2 (1978) 45.Google Scholar
  76. 76.
    L. I. Shvets, N. A. Ovramenko andF. D. Ovcharenko,Dokl. Akad. Nauk SSSR (Chem.),248 (1979) 889.Google Scholar
  77. 77.
    A. K. Maurice andR. C. Buchanan,Ferroelectrics 74 (1987) 61.CrossRefGoogle Scholar
  78. 78.
    N. J. Ali andS. J. Mline,Trans. J. Brit. Ceram. Soc. 86 (1987) 113.Google Scholar
  79. 79.
    N. J. Ali et al., in “Better Ceramics Through Chemistry” Vol. 3 (Materials Research Society, Pittsburgh, 1988) p. 269.Google Scholar
  80. 80.
    L. A. Xue, F. L. Riley andR. J. Brook,Trans. J. Brit. Ceram. Soc. 85 (1986) 47.Google Scholar
  81. 81.
    V. Dharmadhikari andW. Granneman,J. Appl. Phys. 53 (1982) 8988.CrossRefGoogle Scholar
  82. 82.
    C. Feldman,ibid. 27 (1956) 870.CrossRefGoogle Scholar
  83. 83.
    J. Panitz andC. Hu,Ferroelectrics 27 (1980) 161.CrossRefGoogle Scholar
  84. 84.
    J. Fukushima, K. Kodaira andT. Matsushita,Amer. Ceram. Soc. Bull. 55 (1976) 1064.Google Scholar
  85. 85.
    M. I. Yanovskaya et al., Izv. Akad. Nauk. SSSR (Neorg. Mater.) 17 (1981) 307.Google Scholar
  86. 86.
    R. G. Dosch, in “Better Ceramics Through Chemistry”, Vol. 1, (Materials Research Society, Pittsburgh, 1984) p. 157.Google Scholar
  87. 87.
    G. M. Vest andS. Singaram, “Materials Research Society Symposium Proceedings (Defect Prop. Process. High Technology Nonmetallic Materials”) Vol. 60 (Materials Research Society, Pittsburgh, 1986) p. 35.Google Scholar
  88. 88.
    A. S. Shaikh andG. M. Vest,J. Amer. Ceram. Soc. 69 (1986) 682.CrossRefGoogle Scholar
  89. 89.
    A. S. Shaikh andR. W. Vest,ibid. 69 (1986) 689.CrossRefGoogle Scholar
  90. 90.
    K. H. Yeon andH. C. Hong,Chongi Hakhoe Nonmunchi 35 (1986) 323.Google Scholar
  91. 91.
    A. Mansingh andC. V. R. Vasanta Kumar,J. Mater. Sci. Lett. 7 (1988) 1104.CrossRefGoogle Scholar
  92. 92.
    Y. Suwa, Y. Sugimoto andS. Naka,Funtai Oyobi Funmalsuyakin 25 (1978) 164.Google Scholar
  93. 93.
    S. Hirano andS. Naka, Japanese patent JP 6221758A2 [87/217158] January (1987);S. Hirano et al. in “Advances in Ceramics”, Vol. 19 edited by J. B. Blum and W. R. Cannon. (American Ceramics Society, Westerville, Ohio, 1986) p. 139.Google Scholar
  94. 94.
    H. M. O'Bryan andJ. Thomson Jr.,J. Amer. Ceram. Soc. 57 (1974) 522.CrossRefGoogle Scholar
  95. 95.
    Idem, ibid. 58 (1975) 454.CrossRefGoogle Scholar
  96. 96.
    J. K. Ploudre et al., ibid. 58 (1975) 418.CrossRefGoogle Scholar
  97. 97.
    W. W. Rhodes andJ. Thomson Jr.,Amer. Ceram. Soc. Bull. 55 (1976) 308.Google Scholar
  98. 98.
    D. Hennings andP. Schnabel,Philips J. Res. 38 (1983) 295.Google Scholar
  99. 99.
    T. Jakola, A. Uusimaki andS. Leppavuori,Int. J. High Tech. Ceram. 2 (1986) 195.CrossRefGoogle Scholar
  100. 100.
    T. F. Limar, A. I. Savos'kina andN. G. Kisel,Izv. Akad. Nauk. SSSR (Neorg. Mater.) 12 (1976) 1134.Google Scholar
  101. 101.
    Z. Y. Makarova et al., Ukr. Khim. Zh. (in Russian)51 (1985) 454.Google Scholar
  102. 102.
    Information brochure, “The Capacitor” (AV Ceramics, Myrtle Beach, South Carolina, USA).Google Scholar
  103. 103.
    P. C. Osbond, R. W. Whatmore andF. W. Ainger, Proceedings of British Ceramic Society36 (1985) 167.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • Pradeep P. Phule
    • 1
  • Subhash H. Risbud
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of ArizonaTucsonUSA

Personalised recommendations