Journal of Materials Science

, Volume 25, Issue 6, pp 2765–2770 | Cite as

Magnetic and mössbauer study of rare-earth-substituted M-, W- and X-type hexagonal ferrites

  • F. Leccabue
  • R. Panizzieri
  • S. Garcia
  • N. Suarez
  • J. L. Sanchez
  • O. Ares
  • Xue Rong Hua
Article

Abstract

The effects of substitution of Ba2+ ions for some trivalent rare-earth ions on the magnetic properties and phase formation of M-, W- and X-type hexaferrites are studied. The compounds considered were: Ba1-REx/2Nax/2Fe12O19 with RE = gadolinium, lanthanum, lutetium, samarium and 0.0 ⩽x ⩽ 0.3; Ba0.9La0.05Na0.05Zn2Fe16O27 and Ba1.9La0.05Na0.05Zn2Fe28O46. The samples were prepared by standard ceramic procedures and have been investigated by thermomagnetic analysis, X-ray diffraction, Mössbauer spectroscopy, scanning electron microscope and magnetic measurements. Monophasic BaREx/2-M compounds were found for 0.0⩽x<0.2 giving an indication of the solubility range of the rare-earth (RE) atoms in this phase. The intrinsic magnetic properties and the coercive field are lowered with the exception of the lanthanum-substituted hexaferrite. No significant differences in the phase formation and magnetic properties were observed for the W- and X-type hexaferrites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Kubo, T. Ido andN. Yokoyama,IEEE Trans. Mag. 18 (1982) 1122.Google Scholar
  2. 2.
    H. Machida,et al.,J. Magn. Magn. Mater 54–57 (1986) 1399.Google Scholar
  3. 3.
    M. Matsuoka, M. Naoe andY. Hoshi,J. Appl. Phys. 57 (1985) 4040.Google Scholar
  4. 4.
    S. Dey andR. Valenzuela,ibid. 55 (1984) 2340.Google Scholar
  5. 5.
    F. Leccabue et al., ibid. 59 (1986) 2114.Google Scholar
  6. 6.
    F. Leccabue et al., J. Magn. Magn. Mater. 68 (1987) 12.Google Scholar
  7. 7.
    F. Leccabue et al., ibid. 68 (1987) 365.Google Scholar
  8. 8.
    F. Leccabue et al., Mater. Res. Bull. 23 (1988) 263.Google Scholar
  9. 9.
    J. C. Joubert et al., J. Phys. 46 (1985) C6–263.Google Scholar
  10. 10.
    G. Albanese et al., Appl. Phys. A 26 (1981) 45.Google Scholar
  11. 11.
    G. Albanese, G. Asti andP. Batt1,Il Nuovo Cimento 54 B (1968) 339.Google Scholar
  12. 12.
    X. Obradors et al., J. Magn. Magn. Mater. 44 (1984) 118.Google Scholar
  13. 13.
    G. Turilli et al., ibid. 59 (1986) 127.Google Scholar
  14. 14.
    X. Obradors et al., “Advances in Ceramics”, Vol. 15, Part 1, Proceedings of the Fourth International Conference on Ferrites (1984), The American Ceramic Society, Columbus, Ohio, p. 259.Google Scholar
  15. 15.
    You-Wei Du et al., J. Magn. Magn. Mater. 31 (1983) 793.Google Scholar
  16. 16.
    Gu. Ben-Xi, Lu Huaix-Xian andDu You-Wei,ibid. 31 (1983) 803.Google Scholar
  17. 17.
    K. Higuchi, S. I. Hirano andS. Naka, “Advances in Ceramics” Vol. 15, Part 1, Proceedings of the Fourth International Conference on Ferrites, 1984, The American Ceramic Society, Columbus, Ohio, p. 73.Google Scholar
  18. 18.
    G. Asti andS. Rinaldi,J. Appl. Phys. 45 (1974) 3600.Google Scholar
  19. 19.
    S. Garcia andE. Altshuler,Phys. Stat. Sol. (A) 89 (1985) 427.Google Scholar
  20. 20.
    G. Albanese,J. Phys. 38 Supply 4 (1987) C1–85.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • F. Leccabue
    • 1
  • R. Panizzieri
    • 1
  • S. Garcia
    • 2
  • N. Suarez
    • 2
  • J. L. Sanchez
    • 2
  • O. Ares
    • 2
  • Xue Rong Hua
    • 3
  1. 1.MASPEC/CNR InstituteParmaItaly
  2. 2.Laboratory of MagnetismIMRE, La Habana UniversityCuba
  3. 3.Physics DepartmentNanjing UniversityNanjingChina

Personalised recommendations