The physico-chemical speciation of polycyclic aromatic hydrocarbons (PAH) in aquatic systems

  • J. W. Readman
  • R. F. C. Mantoura
  • M. M. Rhead
Original Papers Chemical Concepts in Organic Micropollutant Behaviour


‘Physico-chemical speciation’ is presented as a concept to describe the environmental chemistry of organic compounds in aquatic systems, using polycyclic aromatic hydrocarbons as an example.

Survey data and experimental results are reported which demonstrate the presence of different physico-chemical species of PAH in the Tamar Estuary, UK.

The degree, and hence chemistry of binding of PAH to particulates in the Tamar is shown to be incompatible with current sorption modelling techniques. This finding has extensive repercussions on prediction of the aquatic chemistry of PAH, including availibility of the compounds for fates such as photo-oxidation and biological uptake/ toxicity.


Polycyclic Aromatic Hydrocarbon Polycyclic Aromatic Hydrocarbon Concentration Polynuclear Aromatic Hydrocarbon Tamar Estuary Molecular Weight Polycyclic Aromatic Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Die physikalisch-chemische Speziation polycyclischer aromatischer Kohlenwasserstoffe (PAH) in aquatischen Systemen


Die „physikalisch-chemische Speziation“ wird dargestellt zur Beschreibung der Umweltchemie organischer Verbindungen in aquatischen Systemen. Dabei dienen die PAH als Beispiel. Es werden Meßergebnisse und experimentelle Befunde gegeben, die die Anwesenheit verschiedener physikalisch-chemischer Spezien von PAH in der Mündung des Tamar-Flusses (UK) demonstrieren. Es wird gezeigt, daß der Grad und damit der Chemismus der Teilchenbindung von PAH im Tamarfluß nicht den üblichen Sorptionsmodellen entspricht. Diese Feststellung hat beträchtliche Auswirkungen auf die Voraussehbarkeit des aquatischen Chemismus der PAH einschließlich der Verfügbarkeit dieser Verbindungen für Photooxidation und biologische Aufnahme (Toxizität).


  1. 1.
    Bieri RH, Kent-Cueman M, Smith CL, Chih-Wu Su (1978) Polynuclear aromatic and polycyclic aliphatic hydrocarbons in sediments from the Atlantic Outer Continental Shelf. Intern J Environ Anal Chem 5:293CrossRefGoogle Scholar
  2. 2.
    Blumer M, Youngblood WW (1975) Polycyclic aromatic hydrocarbons in soils and Recent sediments. Science 188:53CrossRefGoogle Scholar
  3. 3.
    Brassell SC, Eglinton G (1980) Environmental chemistry — An interdisciplinary subject. Natural and pollutant organic compounds in contemporary aquatic environments. In: Albaiges J (ed) Analytical techniques in environmental chemistry. Pergamon Press, OxfordGoogle Scholar
  4. 4.
    Chiou CT, Schmedding DW (1982) Partitioning of organic compounds in octanol-water systems. Environ Sci Technol 16:4CrossRefGoogle Scholar
  5. 5.
    Environmental Protection Agency (USA) (1979) Criteria and standards division, Office of Water Planning and Standards. Polynuclear aromatic hydrocarbons — Ambient water quality criteriaGoogle Scholar
  6. 6.
    Giger W, Schaffner C (1978) Determination of polycyclic aromatic hydrocarbons in the environment by glass capillary gas chromatography. Anal Chem 50:243CrossRefGoogle Scholar
  7. 7.
    Gordon JE, Thorne RL (1967) Salt effects on non-electrolyte activity coefficients in mixed aqueous electrolyte solutions. II. Artificial and natural sea waters. Geochim Cosmochim Acta 31:2433CrossRefGoogle Scholar
  8. 8.
    Green J (1968) The biology of estuarine animals. Sidgwick and Jackson, London (Summary of Wentworth Scale of particle sizes, p 21)Google Scholar
  9. 9.
    Herbes SE, Southworth GR, Schaeffer DL, Griest WH, Mastarince MP (1980) Critical pathways of polycyclic aromatic hydrocarbons in aquatic systems. In: Developments in toxicology and environmental science. Series 6. Elsevier, Amsterdam, p 113Google Scholar
  10. 10.
    Herrmann R, Hübner D (1982) Behaviour of polycyclic aromatic hydrocarbons in the Exe Estuary, Devon. Netherlands J Sea Res 15:362CrossRefGoogle Scholar
  11. 11.
    Jackim E, Lake C (1978) Polynuclear aromatic hydrocarbons in estuarine and nearshore environments. In: Wiley ML (ed) Proceedings of the Fourth Biannual International Estuarine Research Conference, Pennsylvania, October 2–5. Academic Press, LondonGoogle Scholar
  12. 12.
    John ED, Cooke M, Nickless G (1979) Polycyclic aromatic hydrocarbons in sediments taken from the Severn Estuary drainage system. Bull Environ Contam Toxicol 22:653CrossRefGoogle Scholar
  13. 13.
    Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241CrossRefGoogle Scholar
  14. 14.
    Laflamme RE, Hites RA (1978) The global distribution of polycyclic aromatic hydrocarbons in Recent sediments. Geochim Cosmochim Acta 42:289CrossRefGoogle Scholar
  15. 15.
    Lake JL, Norwood C, Dimock C, Bowen R (1979) Origins of polycyclic aromatic hydrocarbons in estuarine sediments. Geochim Cosmochim Acta 43:1847CrossRefGoogle Scholar
  16. 16.
    Lewis WM (1975) Polynuclear aromatic hydrocarbons in water. Water Treatment and Examination 24:243Google Scholar
  17. 17.
    Matsushima H (1979) Correlation of polynuclear aromatic hydrocarbons with environmental components in sediment from Hirakata Bay, Japan. Agric Biol Chem 43:1447Google Scholar
  18. 18.
    May WE (1980) The solubility behaviour of polycyclic aromatic hydrocarbons in aqueous systems. In: Petrakis L, Weiss FT (eds) Petroleum in the marine environment. Advances in chemistry series 185, vol 7. American Chemical Society, Washington, p 143Google Scholar
  19. 19.
    Morris AW, Mantoura RFC, Bale AJ, Howland RJM (1978) Very low salinity regions of estuaries: important sites for chemical and biological reactions. Nature 274:678CrossRefGoogle Scholar
  20. 20.
    Morris AW, Bale AJ, Howland RJM (1981) Nutrient distributions in an estuary — evidence of chemical precipitation of dissolved silicate and phosphate. Estuarine Coastal Shelf Sci 12:205CrossRefGoogle Scholar
  21. 21.
    Morris AW, Bale AJ, Howland RJM (1982) Chemical variability in the Tamar Estuary S.W. England. Estuarine Coastal Shelf Sci 14:649CrossRefGoogle Scholar
  22. 22.
    Neff JM (1979) Polycyclic aromatic hydrocarbons in the aquatic environment — sources, fates and biological effects. Applied Science, LondonGoogle Scholar
  23. 23.
    Prahl FG (1982) The Geochemistry of PAH in Columbia River and Washington Coastal Sediments. Doctoral Dissertation, University of WashingtonGoogle Scholar
  24. 24.
    Radding SB, Mill T, Gould CW, Liu DH, Johnson HL, Bomberger DC, Fojo CV (1976) The environmental fate of selected polynuclear aromatic hydrocarbons. EPA 560/5-75-009, U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  25. 25.
    Readman JW, Brown L, Rhead MM (1981) Use of stop-flow ultraviolet scanning and variable-wavelength detection for enhanced peak identification and sensitivity in high-performance liquid chromatography. Analyst 106:122CrossRefGoogle Scholar
  26. 26.
    Readman JW, Mantoura RFC, Rhead MM, Brown L (1982) Aquatic distribution and heterotrophic degradation of polycyclic aromatic hydrocarbons (PAH) in the Tamar Estuary. Estuarine Coastal Shelf Sci 14:369CrossRefGoogle Scholar
  27. 27.
    Readman JW (1982) Polycyclic aromatic hydrocarbons in the Tamar Estuary, Ph. D. Thesis, CNAA, Plymouth PolytechnicGoogle Scholar
  28. 28.
    Readman JW, Mantoura RFC, Rhead MM (1984) Distribution, composition and sources of polycyclic aromatic hydrocarbons in sediments of the River Tamar catchment and estuary, UK. In: Parker WR, Kinsman D (eds) Transfer processes in cohesive sediment systems. Plenum Press (in press)Google Scholar
  29. 29.
    Thompson S, Eglinton G (1978) Composition and sources of pollutant hydrocarbons in the Severn Estuary. Mar Pollut Bull 9:133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. W. Readman
    • 1
  • R. F. C. Mantoura
    • 2
  • M. M. Rhead
    • 3
  1. 1.Masspec AnalyticalHazleton Laboratories Europe Ltd.Stroud
  2. 2.The Institute for Marine Environmental ResearchPlymouth
  3. 3.Faculty of Science, Department of Environmental SciencesPlymouth PolytechnicPlymouthEngland

Personalised recommendations