Pflügers Archiv

, Volume 377, Issue 1, pp 9–14 | Cite as

Maximal reabsorptive capacity for inorganic phosphate (TmPi) in the absence of parathyroid hormone in the rat: Decrease of theTmPi during prolonged administration of phosphate and the role of calcium

  • Anselm Frick
  • Ivan Durasin
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands


Clearance titration studies were performed to examine the maximal reabsorptive capacity for inorganic phosphate (TmPi) in acutely parathyroidectomized (PTX) rats. Under control conditions, the reabsorption of Pi was 6.01±0.92 μmol/min (mean ±S.D.), and during the administration of phosphate the reabsorption of Pi increased initially to 11.62±2.20 and decreased finally to 7.97±2.02 μmol/min. The Reabs./GFR values were 2.12±0.23 (control), 3.57±0.21 and 2.49±0.42 μmol/ml (experimental), respectively. Thus, theTmPi decreased significantly during phosphate loading. Because this drop of theTmPi was accompanied by a significant decrease of the calcium concentration in plasma in these PTX animals, another series of experiments was performed in which the calcium losses in plasma were replaced. Under these conditions the decrease of theTmPi was significantly smaller than in hypocalcemia. It is concluded that calcium may regulate the renal Pi transport in the absence of parathyroid hormone, at least in hypo- and normocalcemic states.

Key words

Phosphate loading Hypocalcemia Parathyroid hormone Maximal reabsorptive capacity for inorganic phosphate Sodium excretion Kidney 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amiel, C., Kuntziger, H., Couette, S., Coureau, C., Bergounioux, N.: Evidence for a parathyroid hormone-independent calcium modulation of phosphate transport along the nephron. J. Clin. Invest.57, 256–263 (1976)Google Scholar
  2. 2.
    Boudry, J.-F., Troehler, U., Touabi, M., Fleisch, H., Bonjour, J.-P.: Secretion of inorganic phosphate in the rat nephron. Clin. Sci. Mol. Med.48, 475–489 (1975)Google Scholar
  3. 3.
    Butlen, D., Jard, S.: Renal handling of 3′-5′-cyclic AMP in the rat. The possible role of luminal 3′-5′-cyclic AMP in the tubular reabsorption of phosphate. Pflügers Arch331, 172–190 (1972)Google Scholar
  4. 4.
    Chase, L. R., Aurbach, G. D.: Parathyroid function and the renal excretion of 3′5′-adenylic acid. Proc. Nat. Acad. Sci.58, 518–525 (1967)Google Scholar
  5. 5.
    Cuche, J. L., Ott, C. E., Marchand, G. R., Diaz-Buxo, J. A., Knox, F. G.: Intrarenal calcium in phosphate handling. Am. J. Physiol.230, 790–796 (1976)Google Scholar
  6. 6.
    Engle, J. E., Steele, T. H.: Renal phosphate reabsorption in the rat Effect of inhibitors. Kieney Int.8, 98–104 (1975)Google Scholar
  7. 7.
    Frick, A.: Reabsorption of inorganic phosphate in the rat kidney. I. Saturation of transport mechanism. II. Suppression of fractional phophate reabsorption due to expansion of extracellular fluid volume. Pflügers Arch.304, 351–364 (1968)Google Scholar
  8. 8.
    Frick, A.: Parathormone as a mediator of inorganic phosphate diuresis during saline infusion in the rat. Pflügers Arch.325, 1–13 (1971)Google Scholar
  9. 9.
    Frick, A., Durasin, I.: Effect of expansion of extracellular fluid volume on the maximal reabsorptive capacity for inorganic phosphate in parathyroidectomized and intact rats. Pflügers Arch.370, 115–119 (1977)Google Scholar
  10. 10.
    Frick, A., Durasin, I.: Effect of the administration of phosphate on the maximal reabsorptive capacity for inorganic phophate (Tm Pi) in acutely parathyroidectomized rats. Pflügers Arch.368, R12 (1977)Google Scholar
  11. 11.
    Glorieux, F., Scriver, C. R.: Loss of a parathyroid hormonesensitive component of phosphate transport in X-linked hypophosphatemia. Science175, 997–1000 (1972)Google Scholar
  12. 12.
    Harris, C. A., Sutton, R. A. L., Dirks, J. H.: Effects of hypercalcemia on calcium and phosphate ultrafilterability and tubular reabsorption in the rat. Am. J. Physiol.233, F201-F206 (1977)Google Scholar
  13. 13.
    Hogben, C. A. M., Bollman, J. L.: Renal reabsorption of phosphate: Normal and thyroparathyroidectomized dog. Am. J. Physiol.164, 670–681 (1951)Google Scholar
  14. 14.
    Jakobs, K. H., Schultz, K., Schultz, G.: Hemmung von Adenyl-Cyclase-Präparationen aus der Rattenniere durch Calciumionen und verschiedene Diuretica. Arch. Pharmacol.273, 248–266 (1972)Google Scholar
  15. 15.
    Lavender, A. R., Pullman, T. N.: Changes in inorganic phosphate excretion induced by renal arterial infusion of calcium. Am. J. Physiol.205, 1025–1032 (1963)Google Scholar
  16. 16.
    Marcus, R., Aurbach, G. D.: Adenyl cyclase from renal cortex. Biochim. Biophys. Acta242, 410–421 (1971)Google Scholar
  17. 17.
    Melick, R. A., Aurbach, G. D., Potts, Jr., J. T.: Distribution and half-life of 131-labeled parathyroid hormone in the rat. Endocrinology77, 198–202 (1965)Google Scholar
  18. 18.
    Oberleithner, H., Greger, R., Lang, F.: Die Rolle des Säure-Basenhaushaltes und des Plasmakalziums (Ca) für die Phosphatresorption während Phosphatbelastung bei thyroparathyreoidektomierten (TPTX) Ratten. (Abstract), XII. Symp. d. Ges. f. Nephrologie, Bonn (1977)Google Scholar
  19. 19.
    Pitts, R. F., Alexander, R. S.: The renal reabsorptive mechanism for inorganic phosphate in normal and acidotic dogs. Am. J. Physiol.142, 648–662 (1944)Google Scholar
  20. 20.
    Rasmussen, H., Anast, C., Arnaud, C.: Thyrocalcitonin, EGTA, and urinary electrolyte excretion. J. Clin. Invest.46, 746–752 (1967)Google Scholar
  21. 21.
    Steele, T. H., DeLuca, H.: Influence of dietary phosphorus on renal phosphate reabsorption in the parathyroidectomized rat. J. Clin. Invest.57, 867–874 (1976)Google Scholar
  22. 22.
    Stinebaugh, B. J., Schloeder, F. X., Gharafry, E., Suki, W. N., Goldstein, M. B., Halperin, M. L.: Mechanism by which neutral phosphate infusion elevates urine\(P_{co_2 } \). J. Lab. Clin. Med.89, 946–958 (1977)Google Scholar
  23. 23.
    Streeto, J. M.: Renal cortical adenyl cyclase: effect of parathyroid hormone and calcium. Metab. Clin. Exp.18, 968–973 (1969)Google Scholar
  24. 24.
    Tröhler, U., Bonjour, J.-P., Fleisch, H.: Inorganic phosphate homeostasis. Renal adaptation to the dietary intake in intact and thyroparathyroidectomized rats. J. Clin. Invest.57, 264–273 (1976)Google Scholar
  25. 25.
    Zarrow, M. X., Yochim, J. M., McCarthy, J. M.: Experimental endocrinology, p. 365. New York, London: Academic Press 1964Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Anselm Frick
    • 1
  • Ivan Durasin
    • 1
  1. 1.Institut für PhysiologieUniversität MünchenMünchenFederal Republic of Germany

Personalised recommendations