Pflügers Archiv

, Volume 375, Issue 2, pp 119–123

Vagal representation in the cerebellum of the cat

  • Hermann E. Hennemann
  • Francisco J. Rubia
Excitable Tissues and Central Nervous Physiology

Abstract

The cervical vagus nerve (VN) was electrically stimulated in Nembutal-anaesthetized cats. The responses recorded from the cerebellar surface were found in lob. V and VI in a bilateral sagittal strip perpendicular to the longitudinal axis of the folia. At a longer latency, potentials were also found in the paramedian lobule. Field potential analysis confirmed the existence of a sagittal strip in the deep parts of the lobules. The distribution of these potentials and their field potential profiles indicate that they are transmitted through the climbing fiber (CF) system. Experiments with local anaesthetics and deafferentation support our view that the potentials described in the vermis by Dell and Olson (1951) could be originated extracerebellarly. A strong parallelism was found between the amplitude of the cerebellar responses and the amplitude of the group B1 component of the vagal afferent potentials, having a conduction velocity between 4 and 20 m/s. The pathway by which the vagal afferents reach the inferior olive and the functional significance of these afferents are discussed.

Key words

Cerebellum Vagus nerve Climbing fibers Field potentials Vermis Cat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, D. M.: Functional significance of connections of the inferior olive. Physiol. Rev.54, 358–417 (1974)Google Scholar
  2. Armstrong, D. M., Harvey, R. J., Schild, R. F.: Spino-olivocerebellar pathways to the posterior lobe of the cat cerebellum. Exp. Brain Res.18, 1–18 (1973)Google Scholar
  3. Bremer, F., Bonnet, V.: Convergence et interaction des influx afférents dans l'écorce cérébelleuse principe fonctionnel du cervelet. J. Physiol. (Paris)43, 665–667 (1951)Google Scholar
  4. Dell, P., Olson, R.: Projections thalamiques, corticales et cérébelleuses des afférences viscérales vagales. C. R. Soc. Biol. (Paris)145, 1084–1088 (1951)Google Scholar
  5. Dow, R. S., Moruzzi, G.: The physiology and pathology of the cerebellum. Minneapolis: The University of Minnesota Press 1958Google Scholar
  6. Eccles, J. C., Ito, M., Szentágothai, J.: The cerebellum as a neuronal machine. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  7. Van Gilder, J. C., O'Leary, J. L.: Effect of Nembutal anaesthesia upon Purkinje cell activation in the cat. Electroenceph. Clin. Neurophysiol.30, 173–188 (1971)Google Scholar
  8. Gordon, M., Rubia, F. J., Strata, P.: The effect of pentothal on the activity evoked in the cerebellar cortex. Exp. Brain Res.17, 50–62 (1973)Google Scholar
  9. Heinbecker, P.: The potential analysis of the turtle and cat sympathetic and vagus nerve trunks. Am. J. Physiol.93, 284–306 (1929)Google Scholar
  10. Hoffer, B. J., Mitra, J., Snider, R. S.: Cerebellar influences on the cardio-vascular system. In: Limbic system mechanisms and autonomic function (Hockman, ed.), pp. 91–112. Springfield, Ill.: Thomas 1972Google Scholar
  11. Kuru, M.: The spino-bulbar tracts and pelvic sensory vagus. Further contributions to the theory of the sensory dual innervation of the viscera. J. Comp. Neurol.104, 207–232 (1956)Google Scholar
  12. Lam, R. L., Ogura, I. H.: An afferent representation of the larynx in the cerebellum. Laryngoscope62, 486–495 (1952)Google Scholar
  13. Larson, B., Miller, S., Oscarsson, O.: A spinocerebellar climbing fibre path activated by the flexor reflex afferents from all four limbs. J. Physiol. (Lond.)203, 641–649 (1969)Google Scholar
  14. Lisander, B., Martner, J.: Integrated somatomotor, cardiovascular and gastro-intestinal adjustments induced from the cerebellar fastigial nucleus. Acta Physiol. Scand.94, 358–367 (1975)Google Scholar
  15. Martner, J.: Cerebellar influences on autonomic mechanisms Acta Physiol. Scand., Suppl.125, 1–42 (1975)Google Scholar
  16. Mitra, J., Snider, R. S.: Nucleus fastigii influences on blood flow and blood pressure. Intern. J. Neurosci.3, 285–290 (1972)Google Scholar
  17. Miura, M., Reis, D. J.: The paramedian reticular nucleus: a site of inhibitory interaction between projections from fastigial nucleus and carotid sinus nerve acting on blood pressure. J. Physiol. (Lond.)216, 441–460 (1971)Google Scholar
  18. Morest, D. K.: Experimental studies of the projections of the nucleus of the tractus solitarius and the area postrema of the cat. J. Comp. Neurol.130, 277–300 (1967)Google Scholar
  19. Paintal, A. S.: Vagal afferent fibres. Ergebn. Physiol.52, 74–156 (1963)Google Scholar
  20. Ramu, A., Bergmann, F.: The role of the cerebellum in blood pressure regulation. Experientia23, 383–384 (1967)Google Scholar
  21. Rasheed, B. M. A., Manchanda, S. K., Anand, B. K.: Effects of the stimulation of paleocerebellum on certain vegetative functions in the cat. Brain Res20, 293–308 (1970)Google Scholar
  22. Sobusiak, T., Zimny, R., Matlosz, Z.: Primary glossopharyngeal and vagal afferent projection into the cerebellum in the dog. J. Hirnforsch.13, 117–134 (1971)Google Scholar
  23. Stella, G.: The effect of cerebellum on respiration. J. Physiol. (Lond.)96, 26 P (1939)Google Scholar
  24. Voogd, J.: The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: The neurobiology of cerebellar evolution and development, (R. Llinás, ed.), pp. 493–514. Chicago: Am. Med. Assoc. 1969Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Hermann E. Hennemann
    • 1
  • Francisco J. Rubia
    • 1
  1. 1.Physiologisches Institut der Universität MünchenMünchen 2Germany

Personalised recommendations