Antonie van Leeuwenhoek

, Volume 61, Issue 3, pp 167–173 | Cite as

Effect of fermented oatmeal soup on the cholesterol level and theLactobacillus colonization of rat intestinal mucosa

  • G. Molin
  • R. Andersson
  • S. Ahrné
  • C. Lönner
  • I. Marklinder
  • M. -L. Johansson
  • B. Jeppsson
  • S. Bengmark
Article

Abstract

Rats were fed with freeze-dried oatmeal soup fermented by six differentLactobacillus strains from rat and man; the formula is intended for enteral feeding. The serum cholesterol levels after 10 d were lower for rats eating oatmeal as compared to a commercial product, Biosorb Sond. Colonizing ability of the administered strains were evaluatedin vivo. OnlyLactobacillus reuteri R21c were able to, effectively, colonizing the mucosa; it represented about 30% of theLactobacillus population 24 d after termination of the administration.L. reuteri R21c was easily recognized by the ability to produce a yellow pigment on agar plates. The identity was confirmed by carbohydrate fermentations (API 50CH), plasmid pattern and endonuclease restriction analysis of the chromosomal DNA.

Key words

cholesterol fermented oatmeal intestine Lactobacillus rat mucosa L. reuteri colonization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrné S & Molin G (1991) Spontaneous mutations changing the raffinose metabolism ofLactobacillus plantarum. Antonie van Leeuwenhoek 60: 87–93Google Scholar
  2. Alverdy JC, Aoyos E & Moss GS (1988) Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104: 185–190Google Scholar
  3. Andersson JW & Linchen W-J (1986) Cholesterol-lowering properties of oat products. In: Webster FH (Ed) Chemistry and Technology. American Association of Cereal Chemists, Inc., St. Paul, MinnesotaGoogle Scholar
  4. Anon (1981) Scaninavian Committee on Enzymes. Experience with Scandinavian recommended method for determination of enzymes in blood. Scand. J. Labor. Invest. 4: 107Google Scholar
  5. Bibel DJ (1988) Elie Metchnikoff's bacillus of long life. ASM News 54: 661–665Google Scholar
  6. Chassy BM, Gibson E & Giuffrida A (1976) Evidence for extrachromosomal elements in lactobacilli. J. Bacteriol. 127: 1576–1578Google Scholar
  7. Conway P & Kjelleberg S (1989) Protein-mediated adhesion ofLactobacillus fermentum strain 737 to mouse stomach squamous epithelium. J. Gen. Microbiol. 135: 1175–1186Google Scholar
  8. Efthymiou C & Hansen CA (1962) An antigenic analysis ofLactobacillus acidophilus. J. Infect. Dis. 110: 258–267Google Scholar
  9. Enfors S-O, Molin G & Ternström A (1979) Effect of packaging under carbon dioxide, nitrogen or air on the microbial flora of pork stored at 4°C. J. Appl. Bacteriol. 47: 197–208Google Scholar
  10. Frölich W & Nyman M (1988) Minerals, phylate and dietary fibre in different fractions of oat-grain. J. Cereal Sci. 7: 73–82Google Scholar
  11. Gilliland SE & Speck ML (1977) Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33: 15–18Google Scholar
  12. Gilliland SE, Nelson CR & Maxwell C (1985) Assimilation of cholesterol byLactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377–381Google Scholar
  13. Gorbach SL, (1986) Function of the normal human microflora. Scand. J. Infect. Dis., Suppl. 49: 17–30Google Scholar
  14. Gregersen T (1978) Rapid method for distinction of Gramnegative from Gram-positive bacteria. Eur. J. Appl. Microbiol. Biotechnol. 5: 123–127Google Scholar
  15. Kvitchevsky D (1978) Influence of dietary fibre on bile acid metabolism. Lipids 13: 982–985Google Scholar
  16. Lin JH-C & Savage DC (1984) Host specificity of the colonization of murine gastric epithelium by lactobacilli. FEMS Microbiol. Lett. 24: 67–71Google Scholar
  17. Molin N, Albertsson CE, Bengmark S & Larsson K (1991) Förfarande för framställning av en näringskomposition och därvid framställd näringskomposition. Swedish patent 8800822-2Google Scholar
  18. Molin G, Johansson M-L, Ståhl M, Ahrné S, Andersson R, Jeppsson B & Bengmark S (1992) Systematics of theLactobacillus population on rat intestinal mucosa with special reference toLactobacillus reuteri. Ant. van Leeuwenhoek 61: 175–183 (this issue)Google Scholar
  19. Norin KE, Persson A-K, Saxerholt H & Midtvedt T (1991) Establishment ofLactobacillus andBifidobacterium species in germfree mice and their influence on some microflora-associated characteristics. Applied and Environmental Microbiology 57: 1850–1852Google Scholar
  20. Roach S & Tannock W (1979) Indigenous bacteria influence the number ofSalmonella typhimurium in the ileum of gnotobiotic mice. Can. J. Microbiol. 25: 1352–1358Google Scholar
  21. Sato K (1984) Enhancement of host resistance againstListeria infection byLactobacillus casei: role of macrophages. Infection Immunity 44: 445–451Google Scholar
  22. Saito H, Watanabe T & Horikawa Y (1986) Effects ofLactobacillus casei onPseudomonas aeruginosa infection in normal and dexamethasone-treated mice. Microbiol. Immunol. 30: 249–259Google Scholar
  23. Saito H, Tomioka H & Nagashima K (1987) Protective and therapeutic efficacy ofLactobacillus casei against experimental murine infections due toMycobacterium fortuitum complex. J. Gen. Microbiol. 133: 2843–2851Google Scholar
  24. Ståhl M, Molin G, Persson A, Ahrné S & Ståhl S (1990) Restriction endonuclease patterns and multivariate analysis as a classification tool forLactobacillus spp. Int. J. Syst. Bacteriol. 40: 189–193Google Scholar
  25. Sugera N, Morotomi M, Watanabe T, Kawai Y & Mutai M (1975) Behaviour of microflora in the rat stomach: adhesion of lactobacilli to the kerantinized epithelial cells of rat stomachin vitro. Infection Immunity 12: 173–179Google Scholar
  26. Tannock GW & Archibald RD (1984) The derivation and use of mice which do not harbour lactobacilli in the gastrointestinal tract. Can. J. Microbiol. 30: 849–853Google Scholar
  27. Tannock GW, Dashkevicz MP & Feighner SD (1989) Lactobacilli and bile salt hydrolase in murine intestinal tract. Appl. Environ. Microbiol. 55: 1848–1851Google Scholar
  28. Webster FH (1986) Chemistry and Technology. American Association of Cereal Chemists, Inc. Inc. St. Paul, MinnesotaGoogle Scholar
  29. Wilmore DW, Smith RJ, Odwyer ST, Jacobs DO, Ziegler TR & Wang XD (1988) The gut: a central organ after surgical stress. Surgery 104: 917–923Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • G. Molin
    • 1
  • R. Andersson
    • 2
  • S. Ahrné
    • 1
  • C. Lönner
    • 1
  • I. Marklinder
    • 1
  • M. -L. Johansson
    • 1
  • B. Jeppsson
    • 2
  • S. Bengmark
    • 2
  1. 1.Food- and Environmental MicrobiologyChemical CenterLundSweden
  2. 2.Department of SurgeryLund UniversityLundSweden

Personalised recommendations