Advertisement

Pflügers Archiv

, Volume 382, Issue 3, pp 203–208 | Cite as

Unimportance of perivascular H+ and K+ activities for the adjustment of pial arterial diameter during changes of arterial blood pressure in cats

  • M. Wahl
  • W. Kuschinsky
Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology

Abstract

The role of perivascular H+ and K+ in the adjustment of pial arterial diameter during changes in arterial blood pressure was investigated in chloralose anesthetized cats. Blood pressure was reduced by i.v. mecamylamine or pentolinium and was increased by i.v. hypertensin. Pial arterioles and arteries with a control diameter ranging from 37–218 μ at a spontaneous mean arterial blood pressure of 128±16 (SD) mm Hg were studied. Vascular diameter as measured by TV image splitting showed the typical reactions, i.e. constriction during increase (up to 200 mm Hg) and dilation during decrease in blood pressure (down to 60 mm Hg). Perivascular H+ and K+ activities were measured using pH microelectrodes (Hinke type) and K+ ion exchanger microelectrodes, respectively. Under control conditions perivascular pH was 7.25±0.11 (SD) and K+ activity was 2.46±0.65 (SD) mM, respectively. During changes in blood pressure the vascular reactions of pial arteries were not accompanied by significant alterations in perivascular H+ or K+ activity. From these data it can be concluded that mechanisms other than those which are mediated by H+ or K+ are involved in the adjustment of pial arterial diameter during changes in arterial blood pressure.

Key words

Local chemical factors Regulation of cerebrovascular resistance Autoregulation pH microelectrodes K+ microelectrodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bill, A., Linder, J.: Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol. Scand.96, 114–121 (1976)Google Scholar
  2. Boisvert, D. P. J., Jones, J. V., Harper, A. M.: Cerebral blood flow autoregulation to acutely increasing blood pressure during sympathetic stimulation. In: Cerebral function, metabolism and circulation, D. H. Ingvar, N. A. Lassen (eds.), pp. 46–47. Copenhagen: Munksgaard 1977Google Scholar
  3. Edvinsson, L., Owman, Ch., Siesjö, B. K.: Physiological role of cerebrovascular sympathetic nerves in the autoregulation of cerebral blood flow. Brain Res.117, 519–523 (1976)Google Scholar
  4. Eklöf, B., MacMillan, V., Siesjö, B. K.: Cerebral energy state and cerebral venouspO2 in experimental hypotension caused by bleeding. Acta Physiol. Scand.86, 515–527 (1972)Google Scholar
  5. Fitch, W., MacKenzie, E. T., Harper, A. M.: Effects of decreasing arterial blood pressure on cerebral blood flow in the baboon. Influence of the sympathetic nervous system. Circ. Res.37, 550–557 (1975)Google Scholar
  6. Halsey, J. H., Robinson, C.: The non role of CSF ph in cerebral autoregulation. Circulation, Suppl. III,49, III-89 (1974)Google Scholar
  7. Heistad, D. D., Marcus, M. L., Abboud, F. M.: Effects of sympathetic nerve stimulation on cerebral blood flow. In: Cerebral function, metabolism and circulation (D. H. Ingvar, N. A. Lassen, eds.), pp. 306–307. Copenhagen: Munksgaard 1977Google Scholar
  8. Herbert, D. A., Mitchell, R. A.: Blood gas tension and acid-base balance in awake cats. J. Appl. Physiol.30, 434–436 (1971)Google Scholar
  9. Hernandez-Perez, M. J., Anderson, D. K.: Autoregulation of cerebral blood flow and its relation to cerebrospinal fluid pH. Am. J. Physiol.231, 929–935 (1976)Google Scholar
  10. Heuser, D.: The significance of cortical extracellular H+, K+ and Ca2+ activities for regulation of local cerebral blood flow under conditions of enhanced neuronal activity. In: Cerebral vascular smooth muscle and its control (M. J. Purves, ed.), pp. 339–349. Amsterdam: Elsevier 1978Google Scholar
  11. Heuser, D., Betz, E.: Änderungen der lokalen perivaskulären H+ und K+-Aktivitäten an Piagefäßen der Katze bei experimenteller Hypertonie. Verh. Dtsch. Ges. Kreislaufforsch.40, 180–183 (1974)Google Scholar
  12. Hoyer, S., Hamer, J., Alberti, E., Stoeckel, H., Weinhardt, F.: The effect of stepwise arterial hypotension on blood flow and oxidative metabolism of the brain. Pflügers Arch.351, 161–172 (1974)Google Scholar
  13. Kontos, H. A., Wei, E. P., Navari, R. M., Levasseur, J. E., Rosenblum, W. I., Patterson, J. L.: Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am. J. Physiol.234, H371–H383 (1978)Google Scholar
  14. Kovach, A. G. B., Hamar, J., Nyary, I., Sandor, P., Reivich, M., Dora, E., Gunlai, L., Eke, A.: Cerebral blood flow and metabolism in hemorrhagic shock in the baboon. In: Blood flow and metabolism in the brain (A. M. Harper, W. B. Jennett, J. D. Miller, J. O. Rowan, eds.), pp. 2.17–2.19. Edinburgh: Churchill Livingstone 1975Google Scholar
  15. Kuschinsky, W., Wahl, M.: Perivascular pH and pial arterial diameter during bicuculline induced seizures in cats. Pflügers Arch. (in press, 1979)Google Scholar
  16. Kuschinsky, W., Wahl, M., Bosse, O., Thurau, K.: Perivascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study. Circ. Res.31, 240–247 (1972)Google Scholar
  17. Lux, H. D., Neher, E.: The equilibration time course of [K+]0 in cat cortex. Exp. Brain Res.17, 190–205 (1973)Google Scholar
  18. MacKenzie, E. T., Strandgaard, S., Graham, D. I., Jones, J. V., Harper, A. M., Farrar, J. K.: Effects of acutely induced hypertension in cats on pial arteriolar caliber, local cerebral blood flow, and the blood-brain barrier. Circ. Res.39, 33–41 (1976)Google Scholar
  19. MacKenzie, E. T., McGeorge, A. P., Graham, D. I., Fitsch, W.: Edvinsson, L., Harper, A. M.: Effects of increasing arterial pressure on cerebral blood flow in the baboon: influence of the sympathetic nervous system. Pflügers Arch.378, 189–195 (1979)Google Scholar
  20. Mchedlishvili, G. I., Nikolaishvili, L. S., Antia, R. V.: Are the pial arterial responses dependent on the direct effect of intravascular pressure and extravascular and intravascularpO2,pCO2, and pH? Microvasc. Res.10, 298–311 (1976)Google Scholar
  21. Morris, M. E.: Hypoxia and extracellular potassium activity in the guinea-pig cortex. Can. J. Physiol. Pharmacol.52, 872–882 (1974)Google Scholar
  22. Morris, M. E.: Brain extracellular potassium and general anaesthetics. Can. J. Physiol. Pharmacol.54, 863–872 (1978)Google Scholar
  23. Olesen, J.: The effect of intracarotid epinephrine, norepinephrine, and angiotensin on the regional cerebral blood flow in man. Neurology22, 978–987 (1972)Google Scholar
  24. Olesen, J.: Quantitative evaluation of normal and pathologic cerebral blood flow regulation to perfusion pressure changes in man. Arch. Neurol.28, 143–149 (1973)Google Scholar
  25. Rubio, R., Berne, R. M., Bockmann, E. L., Curnish, R. R.: Relationship between adenosine concentration and oxygen supply in rat brain. Am. J. Physiol.228, 1896–1902 (1975)Google Scholar
  26. Siesjö, B. K., Zwetnow, N. N.: The effect of hypovolemic hypotension on extra- and intracellular acid-base parameters and energy metabolites in the rat brain. Acta Physiol. Scand.79, 114–124 (1970)Google Scholar
  27. Schneider, W., Wahl, M., Kuschinsky, W., Thurau, K.: The use of microelectrodes for measurement of local H+ activity in the cortical subarachnoidal space of cats. Pflügers Arch.372, 103–107 (1977)Google Scholar
  28. Skinhøj, E.: The upper limit of autoregulation and the sympathetic system. In: Cerebral circulation and metabolism (T. W. Langfitt, L. C. McHenry, M. Reivich, H. Wollman, eds.), pp. 487–488. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  29. Urbanics, R., Leniger-Follert, E., Lübbers, D. W.: Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex. Plügers Arch.378, 47–53 (1978)Google Scholar
  30. Wahl, M., Deetjen, P., Thurau, K., Ingvar, D. H., Lassen, N. A.: Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface. Pflügers Arch.316, 152–163 (1970)Google Scholar
  31. Wahl, M., Kuschinsky, W., Bosse, O., Thurau, K.: Dependency of pial arterial and arteriolar diameter on perivascular osmolarity in the cat. A microapplication study. Circ. Res.32, 162–169 (1973)Google Scholar
  32. Wei, E. P., Kontos, H. A., Patterson, J. L.: Vasoconstrictor effect of angiotensin on pial arteries. Stroke9, 487–489 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. Wahl
    • 1
  • W. Kuschinsky
    • 1
  1. 1.Physiologisches Institut der Universität MünchenMünchen 2Federal Republic of Germany

Personalised recommendations