Pflügers Archiv

, Volume 355, Issue 3, pp 267–271 | Cite as

Permeability pathways for non-electrolytes through bufo bufo gall-bladder

  • S. Curci
  • V. Casavola
  • C. Lippe


Amphotericin B treatment increases the thiourea,d-xylose and mannitol fluxes and lowers those of urea, N-methyl-urea, acetamide, formamide, and N-N′-dimethyl-thiourea. The degree of flux inhibition is related to the cellular permeability of these compounds.

Most probably Amphotericin B increases the permeability of all those molecules across the luminal plasma membrane, but simultaneously elicits a cellular swelling, which reduces the diffusion across the lateral plasma membranes. This effect masks the polyene effect especially for molecules showing a mainly cellular permeation pathway such as amides and lipid, soluble molecules.

Key words

Amphotericin B Gall-Bladder Non Electrolytes Permeation Pathways 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreoli, T. E., Dennis, V. W., Weigl, A. M.: The effect of Amphotericin B on the water and non electrolyte permeability of thin lipid membranes. J. gen. Physiol.53, 133–156 (1969)Google Scholar
  2. 2.
    Cremaschi, D., Montanari, C., Simonic, T., Lippe, C.: Cholesterol in plasma membranes of rabbit gall-bladder epithelium tested with Amphotericin B. Arch. Int. Physiol. Biochim.79, 33–43 (1971)Google Scholar
  3. 3.
    De Kruijff, B., Demel, R. A.: Polyene antibiotic-sterol interactions in membranes of Acholeplasma Laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-sterol complexes. Biochim. biophys. Acta. (Amst.)339, 57–70 (1974)Google Scholar
  4. 4.
    Dennis, V. W., Stead, N. W., Andreoli, T. E.: Molecular aspects of polyene and sterol-dependent pore formation in thin lipid membranes. J. gen. Physiol.55, 375–400 (1970)Google Scholar
  5. 5.
    Holz, R., Finkelstein, A.: The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics Nystatin and Amphotericin B. J. gen. Physiol.56, 125–145 (1970)Google Scholar
  6. 6.
    Lippe, C., Curci, S.: Non-electrolyte permeability across Bufo bufo gall-bladder. Comp. Biochem. Physiol.38A, 473–475 (1971)Google Scholar
  7. 7.
    Lippe, C., Giordana, B.: Effects of Amphotericin B on the permeability of the small and large intestines of Testudo hermanni. Biochim. biophys. Acta (Amst.)135, 966–972 (1967)Google Scholar
  8. 8.
    Mc D. Tormey, J., Diamond, J. M.: The ultrastructural route of fluid transport in rabbit gall-bladder. J. gen. Physiol.50, 2031–2060 (1967)Google Scholar
  9. 9.
    Smulders, A. P., Wright, E. M.: The magnitude of non-electrolyte selectivity in the gall-bladder epithelium. J. Membrane Biol.5, 297–318 (1971)Google Scholar
  10. 10.
    Svelto, M., Perrini, M. C. R., Lippe, C.: Anomalous effect of Amphotericin B on the non-electrolyte fluxes through the skin of Rana esculenta. Gen. Comp. Pharmacol (in press) 1975Google Scholar
  11. 11.
    Van Os, C. H., Slegers, J. F. G.: Path of osmotic water flow through rabbit gall-bladder epithelium. Biochim. biophys. Acta (Amst.)291, 197–207 (1973)Google Scholar
  12. 12.
    Wright, E. M., Diamond, J. M.: Patterns of non-electrolyte permeability. Proc. roy. Soc. B172, 227–271 (1969)Google Scholar
  13. 13.
    Wright, E. M., Smulders, A. P., Mc D. Tormey, J.: The role of the lateral intercellular spaces and solute polarization effects in the passive flow of water across the rabbit gall-bladder. J. Membrane Biol.7, 198–219 (1972)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • S. Curci
    • 1
  • V. Casavola
    • 1
  • C. Lippe
    • 1
  1. 1.Institute of General PhysiologyUniversity of BariBariItaly

Personalised recommendations