Advertisement

Antonie van Leeuwenhoek

, Volume 59, Issue 4, pp 263–268 | Cite as

Pyrimidine base and ribonucleoside utilization by thePseudomonas alcaligenes group

  • Thomas P. West
Article

Abstract

Pyrimidine base and ribonucleoside utilization was investigated in the two type strains of thePseudomonas alcaligenes group. As sole sources of nitrogen, the pyrimidine bases uracil, thymine and cytosine as well as the dihydropyrimidine bases dihydrouracil and dihydrothymine supported the growth ofPseudomonas pseudoalcaligenes ATCC 17440 but neither these bases nor pyrimidine nucleosides supportedPseudomonas alcaligenes ATCC 14909 growth. Ribose, deoxyribose, pyrimidine and dihydropyrimidine bases as well as pyrimidine nucleosides failed to be utilized by eitherP. pseudoalcaligenes orP. alcaligenes as sole carbon sources. The activities of the pyrimidine salvage enzymes nucleoside hydrolase, cytosine deaminase, dihydropyrimidine dehydrogenase and dihydropyrimidinase were detected in cell-free extracts ofP. pseudoalcaligenes andP. alcaligenes. InP. pseudoalcaligenes, the levels of cytosine deaminase, dihydropyrimidine dehydrogenase and dihydropyrimidinase could be affected by the nitrogen source present in the culture medium.

Key words

cytosine deaminase dihydropyrimidinase dihydropyrimidine dehydrogenase nucleoside hydrolase Pseudomonas pyrimidines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen L, Kilstrup M & Neuhard J (1989) Pyrimidine, purine and nitrogen control of cytosine deaminase synthesis inEscherichia coli K12. Involvement of theglnLG andpurR genes in the regulation ofcodA expression. Arch. Microbiol. 152: 115–118Google Scholar
  2. Ban J, Vitale L & Kos E (1972) Thymine and uracil catabolism inEscherichia coli. J. Gen. Microbiol. 73: 267–272Google Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye-binding. Anal. Biochem. 72: 248–254Google Scholar
  4. Chu C-P & West TP (1990) Pyrimidine ribonucleoside catabolism inPseudomonas fluorescens biotype A. Antonie van Leeuwenhoek 57: 253–257Google Scholar
  5. Fink K, Cline RE & Fink RM (1963) Paper chromatography of several classes of compounds: correlated Rf values in a variety of solvent systems. Anal. Chem. 35: 389–398Google Scholar
  6. Hunninghake D & Grisolia S (1965) Uracil and thymine reductases. Methods Enzymol. 12A: 50–59Google Scholar
  7. Kelln RA & Warren RAJ (1974) Pyrimidine metabolism inPseudomonas acidovorans. Can. J. Microbiol. 20: 427–433Google Scholar
  8. Kim JM, Shimizu S & Yamada H (1987) Cytosine deaminase that hydrolyzes creatinine to N-methylhydantoin in various cytosine deaminase-forming microorganisms. Arch. Microbiol. 147: 58–63Google Scholar
  9. Kramer J & Kaltwasser H (1969) Verwertung von pyrimidinderivaten durchHydrogenomonas facilis. II. Abbau von thymin und uracil durch wildstamm und mutanten. Arch. Mikrobiol. 69: 138–148Google Scholar
  10. Morin A, Hummel W & Kula M-R (1986) Production of hydantoinase fromPseudomonas fluorescens strain DSM 84. Appl. Microbiol. Biotechnol. 25: 91–96Google Scholar
  11. O'Donovan GA & Neuhard J (1970) Pyrimidine metabolism in microorganisms. Bacteriol. Rev. 34: 278–343Google Scholar
  12. Ralston-Barrett E, Palleroni NJ & Doudoroff M (1976) Phenotypic characterization and deoxyribonucleic acid homologies of the ‘Pseudomonas alcaligenes’ group. Int. J. Syst. Bacteriol. 26: 421–426Google Scholar
  13. Sakai T, Watanabe T & Chibata I (1968) Metabolism of pyrimidine nucleotides in bacteria. J. Ferment. Technol. 46: 202–213Google Scholar
  14. Sakai T, Yu T & Omata S (1976) Distribution of enzymes related to cytidine degradation in bacteria. Agric. Biol. Chem. 40: 1893–1895Google Scholar
  15. Stanier RY, Palleroni NJ & Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43: 159–271Google Scholar
  16. Vogels GD & van derDrift C (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 40: 403–468Google Scholar
  17. West TP & O'Donovan GA (1982) Repression of cytosine deaminase by pyrimidines inSalmonella typhimurium. J. Bacteriol. 149: 1171–1174Google Scholar
  18. West TP, Shanley MS & O'Donovan GA (1982) Improved colorimetric procedure for quantitating N-carbamoyl-β-alanine with minimum dihydrouracil interference. Anal. Biochem. 122: 345–347Google Scholar
  19. West TP, Traut TW, Shanley MS & O'Donovan GA (1985) ASalmonella typhimurium strain defective in uracil catabolism and β-alanine synthesis. J. Gen. Microbiol. 131: 1083–1090Google Scholar
  20. West TP (1989) Isolation and characterization of thymidylate synthetase mutants ofXanthomonas maltophilia. Arch. Microbiol. 151: 220–222Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Thomas P. West
    • 1
  1. 1.Department of ChemistrySouth Dakota State UniversityBrookingsUSA

Personalised recommendations